Activation and Reaction Volumes in Solution. 2

R. VAN ELDIK,*,[†] T. ASANO,*,[‡] and W. J. LE NOBLE*,§

Institute for Inorganic Chemistry, University of Witten/Herdecke, 5810 Witten, FRG, Department of Chemistry, Faculty of Engineering, Oita University, Oita 870-11, Japan, and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794

Contents

1.	Introduction	550
	A. Scope	550
	B. The Basic Concepts	550
	C. Experimental Techniques	553
	D. Correlation with Other Parameters	554
2.	Activation and Reaction Volumes of Inorganic Reactions	555
	A. General Remarks	555
	B. Solvent- and Ligand-Exchange Reactions	555
	C. Ligand Substitution Reactions	582
	D. Isomerization Reactions	588
	E. Addition and Elimination Reactions	590
	F. Electron-Transfer Reactions	591
	G. Photochemical and Photophysical Processes	592
	H. Bioinorganic Reactions	596
3.	Activation Volumes of Organic Reactions	598
	A. General Remarks	598
	B. The Data in Tabular Form	598
	C. Bond Rotations	598
	D. Bond Cleavage and Formation	646
	E. Pericyclic Reactions	647
	F. Heterolysis and Neutralization	653
	G. Displacement Reactions	653
	H. Cationic Reactions	653
	I. Acyl-Transfer Processes	674
	J. Miscellaneous Reactions	675
4.	Activation Volume Differences	675
5.	Reaction Volumes in Tabular Form	676
	A. Conformational Equilibria	676
	B. Complex Formation	676
	C. Ionic Processes	676
6.	Related Topics and Concluding Remarks	676
7.	Appendix	680
8.	References and Notes	680

[†]University of Witten/Herdecke.

[‡]Oita University.

State University of New York at Stony Brook.

Rudi van Eldik (left) was born in Amsterdam, Holland, and grew up in South Africa, where he received his B.Sc., M.Sc., and Ph.D. (1971) degrees from Potchefstroom University. He spent 2 years (1972 and 1978) with Gordon M. Harris at SUNY at Buffalo and 1 year as an Alexander von Humboldt Fellow with Hartwig Kelm at the University of Frankfurt. He was appointed as Professor of Chemistry at Potchefstroom University (1979) and was awarded the Raikes Medal by the SA Chemical Institute in the same year. He took up the position of group leader at the Institute for Physical Chemistry, University of Frankfurt (1980), where he completed his Habilitation in Physical Chemistry (1982). He was appointed as Professor of Inorganic Chemistry at the University of Witten/ Herdecke in 1987. His research interests are in mechanistic studies of inorganic, organometallic, and bioinorganic reactions, with special emphasis on the application of high-pressure techiques.

Tsutomu Asano (middle) was born in Osaka, Japan, in 1941. He obtained an undergraduate degree in chemistry at Kyoto University, followed by a Ph.D. at the same institute in 1969. He was introduced to high-pressure chemistry by the late Professor Ryozo Goto at the beginning of his graduate work. After postdoctoral work with Professor William J. le Noble, he returned to Kyoto and worked for Professor Jiro Osugi. He joined the faculty of Oita University in 1975, where he is now a Professor of Chemistry. His primary interests are in application of high-pressure kinetics to the elucidation of organic reaction mechanisms. His recent study is concentrated in thermal cis–trans type isomerizations about nitrogen nitrogen and carbon–nitrogen double bonds.

Bill le Noble (right) is a native of Rotterdam, The Netherlands. He did undergraduate work in chemical engineering in Dordrecht and then moved to the U.S. in 1949. After a stint in the U.S. Army, which included wartime service in Korea, he attended the University of Chicago and received a Ph.D. degree in organic chemistry with Professor G. Wheland. Postdoctoral work at Purdue University was followed in 1959 by an appointment at the State University of New York at Stony Brook, where he has stayed ever since. He has held Visiting Professorships at the Free University of Amsterdam and the University of Groningen, received Humboldt Senior Scientist and Mombusho Special Professorship Awards, and serves as Senior Editor of the *Journal of Organic Chemistry* and *Recueil*. His research interests include, besides high-pressure organic chemistry, stereoelectronic control of stereochemistry.

Received April 4, 1988 (Revised Manuscript Received June 27, 1988)

1. Introduction

A. Scope

Two of us reviewed the activation and reaction volumes of chemical reactions in solution 10 years ago. We covered the literature to the end of 1976.¹ The main part of that review concerned reactions of organic systems. Due to the veritable data explosion in the area of inorganic/coordination chemistry, an additional author is now included to take responsibility for that section of the data. Our objective here has been to present a listing as complete as possible of the activation and reaction volumes for all chemical reactions in solution published during the period from January 1977 to the end of 1986; some 1987 data have become available and were also incorporated. This review therefore covers 10 years of activity in this field.

The organization of the data follows that of the earlier review; i.e., they are organized in tabular form according to the type of reaction studied. In the accompanying text the mechanistic implication of the data is discussed and detailed analyses are presented. Several reviews have appeared since 1977 that are more limited in scope (though perhaps also more critical); among these there are accounts dealing with chemistry and biochemistry,²⁻⁶ organic synthesis,^{7,8} inorganic reactions,⁹⁻²⁴ photochemical and photophysical aspects,^{25,26} and the dynamic structure of solvents.²⁷ We note that the Proceedings of the NATO ASI on High Pressure Chemistry and Biochemistry⁶ held in Corfu 1986 is an update of the earlier proceedings published on the ASI held in 1977. Those interested in becoming actively involved in high-pressure research should consult these Proceedings.

B. The Basic Concepts

In general, the kinetic approach to elucidate the mechanism of a chemical reaction involves the measurement of reaction rates and rate constants as a function of many chemical and physical variables. Much emphasis is usually placed on the activation parameters obtained from the temperature dependence of the reaction. The accuracy of the suggested reaction mechanism is likely to increase with increasing number of variables covered during such investigations. This is one of the reasons why pressure has been included as a kinetic (or thermodynamic) variable in an increasing number of studies over the past decade. Such additional information may assist not only in the elucidation of the intimate reaction mechanism, but it may also reveal new fundamental aspects of the studied systems, and thus add to the comprehension of reaction kinetics.

Pressure is a fundamental physical property that influences the values of different thermodynamic and kinetic parameters. In the same way as temperaturedependence studies tell us something about the energetics of the process, pressure-dependence studies reveal information on the volume profile of the process. For any reaction in solution (1), the reaction volume $\Delta \bar{V}$ is

$$\mathbf{A} + \mathbf{B} \rightleftharpoons [\mathbf{A} - -\mathbf{B}]^{*} \to \mathbf{A}\mathbf{B} \tag{1}$$

$$\Delta \bar{V} = \bar{V}_{AB} - \bar{V}_A - \bar{V}_B \tag{2}$$

defined by (2) and the activation volume ΔV^* by (3),

$$\Delta V^* = \bar{V}_* - \bar{V}_A - \bar{V}_B \tag{3}$$

where \bar{V} denotes the partial molar volume of the reactant or product species. The relationships between $\Delta \bar{V}$ and ΔV^* and the pressure dependence of equilibrium and rate constants, respectively, find their origin in the fundamental thermodynamic equations (4) that describe the pressure dependence of the chemical potential μ_i of a solute species *i* in an ideal solution.

$$\left(\frac{\partial \mu_i}{\partial P}\right)_T = \bar{V}_i \tag{4}$$

The chemical potential can be expressed in terms of mole fraction (x), molality (m), and molarity (M), as shown in (5). Since x and m are pressure-independent

$$\mu_i = \mu_i^{\circ}(x) + RT \ln x_i$$

= $\mu_i^{\circ}(m) + RT \ln m_i$
= $\mu_i^{\circ}(M) + RT \ln M_i$ (5)

concentration scales, differentiation with respect to pressure results in (6). In the case of the molarity

$$\left(\frac{\partial \mu_i^{\circ}(x)}{\partial P}\right)_T = \left(\frac{\partial \mu_i^{\circ}(m)}{\partial P}\right)_T = \left(\frac{\partial \mu_i}{\partial P}\right)_T = \bar{V}_i \quad (6)$$

concentration scale, M_i changes with pressure in the same way as the density of the solution; eq 7 then applies, where κ is the compressibility of the solution.

$$\left(\frac{\partial \mu_i^{\circ}(M)}{\partial P}\right)_T = \left(\frac{\partial \mu_i}{\partial P}\right)_T - RT \left(\frac{\partial \ln \rho}{\partial P}\right)_T = \bar{V}_i - RT\kappa$$
(7)

For a general chemical reaction (8), the chemical potential at equilibrium should be zero, and the pressure dependence of K_x (or K_m) is given by eq 9, where

$$a\mathbf{A} + b\mathbf{B} \rightleftharpoons r\mathbf{R} + s\mathbf{S} \tag{8}$$

$$-RT\left(\frac{\partial \ln K_{x}}{\partial P}\right)_{T} = r\bar{V}_{R} + s\bar{V}_{s} - a\bar{V}_{A} - b\bar{V}_{B} = \Delta\bar{V} = \sum \bar{V}_{products} - \sum \bar{V}_{reactants}$$
(9)

 $K = x_{\rm R} r x_{\rm S} s / x_{\rm A} a x_{\rm B} b$, if the overall equilibrium constant is expressed in terms of mole fraction (or molality for K_m). In the case of the molarity concentration scale, eq 7 must be applied, and the appropriate expression for the pressure dependence of $K_M (= M_{\rm R} r M_{\rm S} s / M_{\rm A} a M_{\rm B} b)$ is given in (10). These thermodynamic relationships

$$-RT\left(\frac{\partial \ln K_M}{\partial P}\right)_T = \Delta \bar{V} - RT\kappa(r+s-a-b)$$
(10)

can be extended to rate constants by adopting the transition-state theory, according to which it is assumed that reaction 8 proceeds through a transition state that exists in equilibrium with the reactant species. This is formulated in eq 11, where K^* obeys the thermody-

$$aA + bB \xleftarrow{K^{\bullet}} [aA - -bB]^{*} \rightarrow rR + sS$$
 (11)

namic relationships given above, and the experimentally measured rate constant k is assumed to be proportional to K^*T . Since k has then the same concentration dimensions as K^* , eq 9 and 10 can be used to describe the

pressure dependence of k in terms of the activation volume ΔV^* as given in (12) and (13), where $\Delta V^* = \bar{V}_*$

$$-RT\left(\frac{\partial \ln k_x}{\partial P}\right)_T = -RT\left(\frac{\partial \ln k_m}{\partial P}\right)_T = \Delta V^* \quad (12)$$

$$-RT\left(\frac{\partial \ln k_M}{\partial P}\right)_T = \Delta V^* - RT\kappa(1-a-b) \quad (13)$$

 $-aV_{\rm A}-bV_{\rm B}$. It follows that in the case of a first-order process, the expressions for the pressure dependence of k_x , k_m , and k_M are identical. However, for reactions of a higher order the additional term in eq 13 should be taken into account, which could vary between 1 and $6 \text{ cm}^3 \text{ mol}^{-1}$, depending on the solvent used.^{5,28} It is important to note that this term has caused much misunderstanding in the literature and that it has led to many incorrectly applied "corrections" of rate constants higher than first order. This situation has come about because many workers have failed to realize that moles/liter at 1 atm is a pressure-independent unit just as much as mole fraction or molality; if, as is usually the case, the concentrations are known in this unit (of moles/liter at 1 atm), no correction must be applied, and to do so leads to wrong results. A correction is needed only if the concentrations are only known as moles/liter at the pressures at which they are used, and *if* one wishes to calculate an activation (or reaction) volume from these data.

Of course, *if* one wishes to record the rate or equilibrium constants simply in terms of moles/liter, without specifying the pressure, then one needs to know the compressions that have occurred at the pressures at which these constants were measured. This is done by calculating M_i indirectly by correcting the normal-pressure value M_i^* for the increase in pressure by means of relationship 14, where ρ is the density of the solution

$$M_i = M_i^* \rho / \rho^* \tag{14}$$

at the elevated pressure and ρ^* the value at ambient pressure. In the case of a second-order rate constant, i.e., where 1 - a - b = -1, an uncorrected rate constant k_M^* is usually calculated by using the concentration M_i^* at atmospheric pressure. To obtain k_M in terms of the

$$k_{M} = k_{M} * M_{i} * / M_{i} = k_{M} * \rho * / \rho \tag{15}$$

actual concentration at elevated pressure, k_M^* must be corrected, by converting M_i^* to M_i using eq 14. Differentiation with respect to pressure results in (16), since ρ^* is a constant and $(\partial \ln \rho / \partial P)_T = \kappa$. From a

$$-RT\left(\frac{\partial \ln k_{M}}{\partial P}\right)_{T} = -RT\left(\frac{\partial \ln k_{M}^{*}}{\partial P}\right)_{T} - RT\left(\frac{\partial \ln \rho^{*}/\rho}{\partial P}\right)_{T} = -RT\left(\frac{\partial \ln k_{M}^{*}}{\partial P}\right)_{T} + RT\kappa$$
(16)

comparison of (13) and (16) with 1 - a - b = -1, one obtains eq 17. Thus the uncorrected rate constants k_M^*

$$-RT\left(\frac{\partial \ln k_M^*}{\partial P}\right)_T = \Delta V^* \tag{17}$$

(calculated with atmospheric molarities M_i^*) can be used to determine ΔV^* : the correction term in eq 13 is canceled by a similar term in (16). Similar arguments can be applied to eq 10; i.e., an uncorrected K_M value can be used to estimate $\Delta \bar{V}$.²⁸ We conclude that molarity concentration units at 1 atm are just as valid (and usually more convenient) for high-pressure work as mole fractions and molalities.

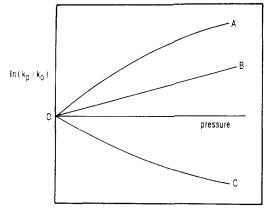
The choice of pressure units in the literature is gradually changing, from bars and kilobars to pascals. Most of the articles quoted made use of kbar, and we therefore do also, but MPa and GPa are seen with increasing frequency, and we recommend their future use (1 kbar = 100 MPa). It follows from eq 10 and 17 and the above discussion that $\Delta \overline{V}$ and ΔV^{\dagger} can be determined from the pressure dependence of K and k, respectively, whether they are expressed as mole fraction, molality, or molarity. The instrumentation used to determine these dependencies will be treated in the following section. Important to note, however, is the fact that plots of $\ln k$ (or $\ln K$) versus pressure need not be, and generally are not, linear. A few typical examples of such plots are given in Figure 1. For cycloaddition, the rate constant increases with increasing pressure: the negative volume of activation decreases in absolute magnitude with increasing pressure. In homolytic scission, the rate constant decreases with increasing pressure, corresponding to a positive volume of activation; this also decreases with increasing pressure. Curves A and C are markedly curved, and various mathematical treatments have been suggested to calculate the volume of activation at zero (atmospheric) pressure, ΔV_0^* , and the compressibility coefficient of activation, $\Delta\beta^*$, defined by eq 18. Among these

$$\Delta \beta^* = -(\partial \Delta V^* / \partial P)_T \tag{18}$$

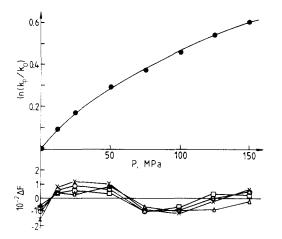
treatments, perhaps the most popular one is the parabolic function (19), for which $\Delta V_0^* = -bRT$ and $\Delta \beta^* = 2cRT$.¹ Equilibrium constants can exhibit similar

$$\ln k = a + bP + cP^2 \tag{19}$$

curved pressure dependencies, and these are treated in the same way. During the period covered by this review, several new equations were employed to account for the pressure dependence of $\Delta \bar{V}$ (or ΔV^*) and k (or K), and these can be summarized as follows:


$$\Delta \bar{V}_P / \Delta \bar{V}_0 = 1 - a \ln (1 + bP) \quad (\text{ref } 29) \quad (20)$$

$$\int_{0}^{P} (\Delta \bar{V}_{P} / \Delta \bar{V}_{0}) \, dP = (1+a)P - a(1-bP) \ln (1+bP) / b \quad (\text{ref 30}) \quad (21)$$


$$\ln k = \ln k_0 + aP + bP/(1 + cP) \Delta V_0^* = -(a + b)RT \quad (ref 31)$$
(22)

$$\ln k = \ln k_0 + aP + b \ln (1 + cP) \Delta V_0^* = -(a + bc)RT \quad (ref 31)$$
(23)

In general, some of the various equations used (for a complete summary, see ref 24) will result in slightly different values for ΔV_0^* and $\Delta \beta^*$, as illustrated by the typical example in Figure 2.³² It is difficult to distinguish between the validity of these data-fitting procedures based on the deviations (ΔF) from the fitted line. The trend in ΔF is caused more by the statistical scatter of the data points than by the specific equation adopted. However, the mechanistic interpretation of

Figure 1. Typical plots of $\ln (k_P/k_0)$ vs pressure: (A) cycloaddition reaction; (B) ligand substitution reaction; (C) homolytic scission reaction.

Figure 2. Treatment of data for the ligand substitution reaction involving Pt(dien)Cl⁺ and OH⁻ in aqueous solution:³² (×) F = $a + bP + cP^2$, $\Delta V_0^* = -14.7 \pm 0.8 \text{ cm}^3 \text{ mol}^{-1}$; (O) F = a + bP + $cP^2 + dP^3$, $\Delta V_0^* = -17.9 \pm 1.0 \text{ cm}^3 \text{ mol}^{-1}$; (D) $F = a + b[1 - \exp(-cP)]$, $\Delta V_0^* = -16.2 \pm 2.0 \text{ cm}^3 \text{ mol}^{-1}$; (Δ) F = a + bP/(c + P), $\Delta V_0^* = -17.3 \pm 0.5 \text{ cm}^3 \text{ mol}^{-1}$.

 $\Delta V^*{}_0$ will not be affected by the relatively small differences indicated in Figure 2.

It is the general objective to combine activation, reaction, and partial molar volume data to construct a reaction volume profile that describes the reaction in terms of volume changes that occur along the reaction coordinate. Such a profile (see Figure 3 for the volume profile of reaction 1) is a pictorial view of the chemical reaction on the basis of volume changes, which may contribute to the understanding and/or elucidation of the underlying reaction mechanism. Thus, the relationship between ΔV^{*} and $\Delta \bar{V}$ can reveal information concerning the "early" or "late" nature of the transition state,³ as demonstrated schematically in Figure 4. We emphasize that $\Delta \bar{V}$ and ΔV^{*} need not have the same sign; the transition state often represents a volume extremum.

Three factors determine the partial molar volume of a dissolved species in solution:³³ (i) the intrinsic size of the species as determined by its van der Waals radius; (ii) the interaction of the species with the solvent to cause electrostriction; (iii) the interaction of the species with all the solute species, including itself. In general, the contribution from (iii) is unimportant in dilute solutions, and the contribution from (i) is usually accepted to be independent of the solvent and the concentration. The contribution from (ii) is a complex

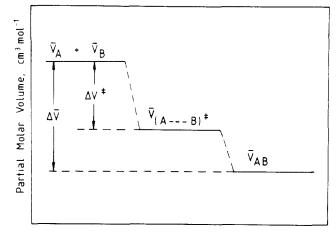


Figure 3. Volume profile for reaction 1.

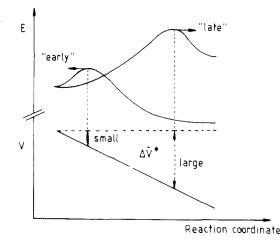
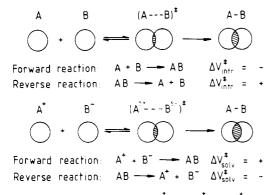


Figure 4. Energy and volume profiles to illustrate the effect of "early" and "late" transition states.³

one: the solute molecules or ions exert repulsive forces on the solvent molecules at close separations and attractive forces at longer distances, such that the orientation and packing of the solvent molecules vary significantly. If the solute is ionic, the attractive forces are overwhelming and the solvent molecules are contracted by electrostriction. This contribution is important and often so large that it completely overrides the intrinsic volume component, so that some ions actually have negative net partial molar volumes in solution.


On the basis of these factors it became advantageous and valid to a first approximation to consider reaction and activation volumes as the sum of an intrinsic and a solvational component as shown in (24). The intrinsic

$$\Delta \bar{V} = \Delta \bar{V}_{\text{intr}} + \Delta \bar{V}_{\text{solv}}$$
(24)

part results from the net motion of the nuclei of the reacting species, i.e., changes in bond lengths and angles during the formation of the products. The solvation part represents all volume changes associated with changes in polarity, electrostriction, and dipole interactions during the reaction. The validity of this relationship can easily be seen from typical reaction volume data. For instance, $\Delta \bar{V}$ for a series of neutralization reactions of the type shown in (25), where MA^z is an

$$MA^{z} + OH^{-} \rightarrow MB^{z-1} + H_{2}O$$
 (25)

octahedral transition-metal complex, is expected to correlate with Δz^2 (= z^2 (product) - z^2 (reactant)) since

Overall volume effect:
$$\Delta V^+ = \Delta V_{intr}^+ + \Delta V_{solv}^+$$

Figure 5. Schematic representation to illustrate the sign of the components of ΔV^* .

 $\Delta \bar{V}_{solv}$ will vary with $\Delta z^{2,34}$ Experimental data for a series of 21 different complexes demonstrate the validity of these expectations, and $\Delta \bar{V}$ varies between 3 and 35 cm³ mol⁻¹, depending on the size of Δz^{2} .

In a similar way, ΔV^* may be considered as the sum of two components: an intrinsic part (ΔV^*_{intr}), which represents the change in volume due to changes in bond lengths and angles, and a solvation part (ΔV^*_{solv}), which represents the volume changes due to electrostriction and other effects acting on the surrounding solvent molecules during the activation process. It is principally the intrinsic contribution that is the mechanistic indicator. A schematic representation of these components for a typical bond formation or bond cleavage process, during which partial charge neutralization or creation may occur, is given in Figure 5. The mechanistic assignments for processes in which no major solvational changes occur are, in fact, straightforward, since bond formation should result in a negative ΔV^{*}_{intr} and bond cleavage in a positive one. In reactions with large polarity changes, ΔV^*_{solv} may be larger than ΔV^*_{intr} , and it can in fact counteract and swamp the ΔV^*_{intr} term. Various ways to describe the solvent dependence of ΔV^* have been suggested.^{3,33} It is therefore not surprising that good correlations between ΔV^* and some solvent-characterizing parameters have been observed.^{3,33,35} In such correlations the intercept at ΔV^{*}_{solv} = 0 represents ΔV_{intr}^* , and this is one way to separate the two contributions. Asano³⁶ suggested a different method to estimate ΔV^*_{intr} directly from the pressure dependence of k according to eq 26, where B is a characteristic solvent parameter and the pressure is in bars.

$$-\frac{RT}{P-1}\ln\frac{k_P}{k_1} = \Delta V^*_{\text{intr}} - \frac{K}{P-1}\ln\frac{B+P}{B+1} \quad (26)$$

Much of the discussion concerning the interpretation of ΔV^* is based on our acceptance of the validity of the transition-state theory (TST). In view of the general simplicity of this theory, it is quite remarkable that it can be used in so many cases to account for the observed activation parameters. On the other hand, one must be aware of its shortcomings and should consider alternative treatments to account for the observed data. In the usual TST treatment it is assumed that the activity coefficients are close to unity (dilute solutions) and that the transmission coefficient $\bar{\kappa} = 1$. In that case, TST overestimates the rate of a reaction since $\bar{\kappa}$ must often be smaller than one. It follows that the experimental and TST rate constants are related through eq 27. Stochastic models have been introduced to account $h = -\pi h$ (27)

$$R_{\text{exptl}} = \bar{\kappa} R_{\text{TST}} \tag{27}$$

for the deviation of $\bar{\kappa}$ from unity.³⁷⁻³⁹ Frictional effects (i.e., solvent dynamics) are contained in $\bar{\kappa}$ and can force a system to reverse its reaction mode at the transition state; reactants may cross the transition state back and forth before reacting to give the product.⁴⁰ This coupling of the reaction coordinate with the surrounding medium brings about that at low friction, $\bar{\kappa}$ is proportional, and at high friction inversely proportional to the collision frequency, which in turn is proportional to viscosity.^{27,40,41} In the low-friction (damping) region, collision activation is rate determining, whereas in the high-friction region, the process is diffusion controlled. In terms of the pressure dependence of the experimental rate constant, eq 27 results in (28), where

$$\Delta V^{*}_{\text{exptl}} = \Delta V^{*}_{\text{coll}} + \Delta V^{*}_{\text{TST}}$$
(28)

 $\Delta V^*_{\text{exptl}} = -RT(\partial \ln k_{\text{exptl}}/\partial P)_T, \ \Delta V^*_{\text{TST}} = -RT(\partial \ln k_{\text{TST}}/\partial P)_T, \text{ and } \Delta V^*_{\text{coll}} = -RT(\partial \ln \bar{\kappa}/\partial P)_T.$ The latter term can be positive or negative, depending on whether $\bar{\kappa}$ increases or decreases with increasing collision frequency, i.e., viscosity. $\Delta V^*_{\text{exptl}}$ is the only measurable quantity, and ΔV^*_{TST} must be estimated theoretically in order to obtain values for ΔV^*_{coll} and $\bar{\kappa}$ as a function of pressure. Jonas et al.^{27,41} studied the pressure dependence of the chair-to-chair isomerization of cyclohexane in various solvents and estimated ΔV^*_{TST} to be $-1.5 \text{ cm}^3 \text{ mol}^{-1}$, which results in ΔV^*_{coll} values of between -3.4 and $+0.5 \text{ cm}^3 \text{ mol}^{-1}$, depending on the solvent employed.

Troe and co-workers^{42–44} have followed an alternative approach. They recognize that the interpretation of ΔV^* in the spirit of the TST neglects the "transport" aspect of the reaction, which is a flow in a viscous medium. Under conditions where the transport property, i.e., interaction with the medium, enters the rate constant as a factor, ΔV^*_{exptl} can be expressed as in (29),

$$\Delta V^*_{\text{exptl}} = \Delta V^*_{\text{TST}} + \Delta V^*_{\text{transport}}$$
(29)

where $\Delta V^*_{\text{transport}} = RT(\partial \ln \eta/\partial P)_T$. To study the transport contribution in dissociation and recombination reactions, they investigated the pressure dependence of reactions over a range of densities from the gas phase (collision energy transfer controlled) to the dense fluid phase (diffusion controlled). The experimental data can be fitted with a model in which cluster- and cage-solvent shifts of the threshold energy are taken into account.

The discussed modifications of TST treatment are first efforts to account for the observed experimental data, but the good agreement between theoretically expected and experimentally observed trends is very encouraging and more developments are surely forthcoming. The nature of the processes studied up to now is more physical than chemical, and because of that collision, friction, and transport phenomena are bound to play an important role.

C. Experimental Techniques

Detailed accounts of experimental techniques are given elsewhere.^{2,5,6,24,45} During the past decade UV-vis spectral measurements were increasingly made with the

"pillbox" quartz cell⁴⁶ using a typical two-window high-pressure cell. A modification of this cell enables one to do pulsed laser flash photolysis and to make excited-state lifetime mesaurements^{47,48} at pressures up to 300 MPa using a three- or four-window high-pressure cell. Considerable development of instrumentation to perform kinetic measurements under pressure on a milli-, micro-, or nanosecond time scale has led to a remarkable increase in activity in this area. A mixing system was developed for moderately fast reactions with a half-life of a few seconds or longer.⁴⁹ Various groups have developed high-pressure stopped-flow instrumentation for which the deadtime varies between 10 and 40 ms at pressures up to 200 MPa.⁵⁰⁻⁵⁹ Two groups have constructed Joule-heating T-jump instruments for pressures up to 200 MPa and heating times of about 10 μ s.^{60,61} Inoue and co-workers⁶² have reported technical information on a high-pressure pressure-jump system in which a jump of 13 MPa was used for pressures up to 100 MPa. High-pressure NMR techniques have contributed significantly to the study of fast reactions at pressures up to 300 MPa.⁶³⁻⁶⁹ Equipment originally designed for spectrometers with electromagnets has been modified for use with superconducting magnets. Similar instrumentation has been used for ESR and EPR measurements at elevated pressure.^{4,70,71} Processes in the nanosecond time range can be studied with the aid of pulsed-laser techniques, and various instruments have been developed to perform such measurements at elevated pressure.^{47,48,72-76} In addition, Whalley et al. developed two techniques to study chemical kinetics at extremely high pressures of up to 10⁴ MPa.⁷⁷

As discussed before, ΔV^* measurements should be complemented by $\Delta \bar{V}$ data, which can be obtained from partial molar volume measurements via density data or measured directly with the aid of a dilatometer (and, when practical of course, by measuring the effect of pressure on the equilibrium constant). Special dilatometers have been constructed to measure $\Delta \bar{V}$ for fast reactions in which two chambers are used to separate the reactants prior to mixing. A new design for such an instrument was recently reported by Hashitani et al.⁷⁸

D. Correlation with Other Parameters

In the previous sections, we have referred to the pressure and solvent dependence of ΔV^* and $\Delta \bar{V}$. The temperature dependence of these quantities can be obtained by considering the temperature dependence of the chemical pot ntial μ_i as done in eq 30. Since it

$$(\partial \mu_i / \partial T)_P = -S_i \tag{30}$$

is a property of partial differentials that the order of successive differentiations of a continuous function $\mu_i(T,P)$ is immaterial, it follows that

$$\left[\frac{\partial}{\partial P}\left(\frac{\partial\mu_i}{\partial T}\right)_P\right]_T = \left[\frac{\partial}{\partial T}\left(\frac{\partial\mu_i}{\partial P}\right)_T\right]_P \tag{31}$$

$$(\partial \bar{V}_i / \partial T)_P = -(\partial S_i / \partial P)_T \tag{32}$$

Application of eq 32 (one of the Maxwell relations) to an equilibrium or a reaction results in the expressions given in (33). A number of groups have measured these

$$(\partial \Delta V / \partial T)_P = -(\partial \Delta S / \partial P)_T$$
$$(\partial \Delta V^* / \partial T)_P = -(\partial \Delta S^* / \partial P)_T$$
(33)

quantities and found the data to conform quite well to the relationships in (33). Some of these authors used this equality to prove the assumption made in the TST, namely, that a thermodynamic equilibrium exists between the reactant and transition state;^{10,11,79} however, Hamann⁸⁰ recently pointed out that such conclusions are unfounded since the relationship (33) is merely a mathematical consequence of the definitions of $\Delta \bar{V}$ (or ΔV^*) and ΔS (or ΔS^*).

Many studies of the effects of pressure on the rate and equilibrium constants of chemical processes in solution have been carried out under conditions where the concentrations of the reactants are known, but their activity coefficients were not. Partial molar volumes are related thermodynamically to the pressure dependence of the mean activity coefficient γ_{\pm} by eq 34,

$$(\partial \ln \gamma_{\pm}/\partial P)_T = (\bar{V} - \bar{V}^{\circ})/vRT \qquad (34)$$

where v is the stoichiometric number of ions produced by dissociation of the electrolyte and \bar{V} and \bar{V}° are the partial molar volumes at the ionic strength of the solution and at infinite dilution, respectively. Experimental data for some 1:1 and 1:2 electrolytes⁸¹ indicate that γ_{\pm} increases with increasing pressure, particularly at higher ionic strengths. For very dilute solutions the effect of pressure on γ_{\pm} can be predicted accurately from the Debye-Hückel limiting law. In less dilute solutions, to $\mu \approx 0.2$ M, it would be expected that γ_{\pm} will be described well by the complete Debye-Hückel relationship. The results, however, show that the pressure dependence can be described by the limiting Debye-Hückel treatment, and it is surprising that the complete expression cannot describe it in a quantitatively satisfactory way.⁸¹ In any event, these effects may partly account for the pressure dependence of ΔV and ΔV^* .

Finally, much emphasis has been placed on the possible correlation between $\Delta \overline{V}$ (and ΔV^*) and ΔS (and ΔS^*). The relationships (33) indicate that there is no thermodynamic or quasi-thermodynamic equation that links the derivatives of these quantities directly. However, since these quantities stem from the same source in a thermodynamic and kinetic sense, some correlation is expected. This has been realized by a number of investigators; they have reported plots of $\Delta \bar{V}$ versus ΔS , or ΔV^* versus $\Delta S^{*,10,82-85}$ Much of their interpretation of ΔV^* data has focused on their correlation with ΔS^* . However, it is misleading to use such a generalized correlation since there are numerous exceptions. It should be noted that ΔS and ΔS^* are usually subject to large error limits since they are determined by extrapolating the experimental data (Kand k as a function of temperature) to $1/T \rightarrow 0$. In contrast, ΔV and ΔV^* result from the slope of ln K or $\ln k$ versus P plots, respectively, and can therefore usually be determined more accurately. All in all, it is quite safe to conclude that a large positive ΔS^* value will correspond to a clearly positive ΔV^* value and vice versa, and similarly for large negative values. Data in the intermediate range may exhibit all kinds of trends and do not correlate well.86

or

2. Activation and Reaction Volumes of Inorganic Reactions

A. General Remarks

In contrast to the longstanding application of highpressure techniques in the study of organic reaction mechanisms, it was only in the mid-1950s that this method was first applied to the study of inorganic and organometallic systems. However, the activity in this area has increased exponentially since then: ca. 170 volumes of activation had been determined by 1978,¹ an additional 360 data sets were available by the end of 1983, and a further 200 data sets were published by 1985.²³ This increased activity is partly due to the general availability of equipment allowing kinetic measurements in the milli-, micro-, and nanosecond time ranges at pressures up to 300 MPa.

The data in the tables are arranged according to the different types of reactions and the atomic number of the central metal atom, going from the highest to the lowest oxidation state for a particular atom. Reaction volume data $(\Delta \overline{V})$ are included in the tables where available, and the methods employed to determine $\Delta \bar{V}$ are (a) from the pressure dependence of the equilibrium constant, (b) from dilatometric or partial molar volume (density) measurements, and (c) from theoretical extrapolations. Other general remarks are as follows: ΔV^* data are quoted at ambient pressure; in case of significant curvature in the ln k versus P plot, $\Delta\beta^*$ is also given. The number of data refers to the number of pressures at which kinetic measurements (usually three to five kinetic runs) were performed. The maximum applied pressure is quoted in the fifth column, the concentration is given in mol L^{-1} (M) or mol kg⁻¹ (m), and the anions quoted in parentheses refer to the ionic strength controlling medium employed; ClO_4^{-} usually refers to a mixture of $HClO_4$ and $NaClO_4$. A list of abbreviations follows the tabulated data. Reactions for which no reaction products are specified in detail are indicated in this way since the original papers do not state a definite product assignment.

B. Solvent- and Ligand-Exchange Reactions

This and the following section C deal with ligand substitution processes, i.e., processes in which coordinated ligand or solvent molecules are substituted by identical or other molecules. The two sections differ in that this section presents systems in which no net chemical reaction occurs—i.e., solvent and ligand molecules are substituted (exchanged) by identical uncoordinated molecules—whereas section C presents systems with a net chemical reaction.

Most substitution reactions are still discussed in terms of the Langford and Gray classification³²² introduced more than 20 years ago. For a general ligand substitution reaction (34a), where X is the leaving

$$ML_nX + Y \rightarrow ML_nY + X \tag{34a}$$

group, Y is the entering ligand, and L is the nonparticipating ligands, there are three simple pathways: (i) the dissociative (D) process, with an intermediate of lower coordination number; (ii) the associative (A) process, with an intermediate of higher coordination number; (iii) the interchange (I) process, in which no intermediate of lower or higher coordination number

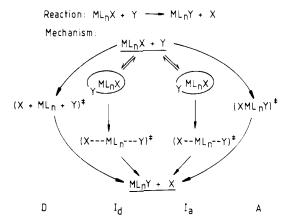


Figure 6. Schematic representation of the possible ligand substitution mechanisms.

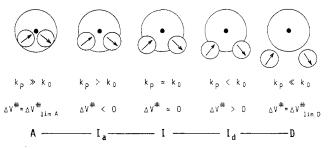


Figure 7. Schematic representation of the transition state at crucial points in the spectrum of solvent-exchange mechanisms.³²⁴

is involved. The latter possibility is further subdivided into two types: associative interchange (I_a) or dissociative interchange (I_d) . A schematic presentation of these mechanisms is given in Figure 6. A comparison of this notation can be made with Ingold's nomenclature introduced for nucleophilic substitution (S_N) , with a D mechanism corresponding to limiting S_N1 , an A mechanism corresponding to limiting S_N2 , and the interchange mechanisms I_d and I_a corresponding to $\mathbf{S}_N \mathbf{1}$ and S_N2 , respectively. The outlined classification can best be understood on the basis of energy profiles, in which the formation of an intermediate of higher or lower coordination number is characterized by a minimum in the profile.³²³ For the purpose of this review, such cases will be referred to as limiting associative (A) or limiting dissociative (D), respectively, whereas the interchange notation will be adopted for cases in which both bond formation and bond cleavage occur simultaneously.

For the solvent- and ligand-exchange reactions reported in this section, electrostriction is assumed to be constant throughout the reaction coordinate, and the volume of activation is given by the intrinsic contribution, ΔV^*_{intr} . With this assumption the sign of ΔV^* gives immediate insight into the intimate nature of the activation process. The volume changes associated with the various possible substitution mechanisms are schematically presented in Figure 7. A continuous spectrum of transition-state configurations can be envisaged, ranging from very compact with a large negative ΔV^* value.

According to the data collected in Table I, 115 data sets became available during the time covered. These have allowed a systematic analysis of the data,^{15,16,324} which resulted in the formulation of a number of important mechanistic trends along the elements in the periodic table. Most of the solvent- and ligand-ex-

+48±114 +54±114 +54±114 +54±112 -24±12 -24±12 -24±12 -24±12 -11±0.3 +2.6±111 -1.9±0.4 +7.0±0.9 888 +85±0.9 -1.1±0.3 -1.	no.	reaction	solvent	<i>T</i> , °C	<i>P</i> , kbar	no. of data	$\Delta V^*, \ \mathrm{cm}^3 \mathrm{mol}^{-1}$	$\Delta eta^*, \ { m cm}^3 { m mol}^{-1} \ { m kbar}^{-1}$	ΔV , cm ³ mol ⁻¹ (method)	ref	remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-		0 n	1	/ent/Lig	and Exchar	nge Reactions			ГЭ	[H+1 - 0.9_3 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	$A_1(H_2U)_6^- + H_2U$	0211	071_0	0.2	14 ^ 12	7.0 1 1.0.1			10	$\mu = 4.3-7.5 \ m \ (ClO_4^{-})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$AI(DMSO)_{3^+} + DMSO$	CH ₃ NO ₂	85 20	2.0	12	++ -	$+4.8 \pm 1.4$		88 88 88	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ ~	$AI(DMF)_{6}^{3+} + DMF$	CH ₃ NO ₂	82	2.0	12	# +	$+5.4 \pm 1.2$		88	
	r 10	$AI(acac)_3 + acac^-$	Hacac	25	2.4	7				68	spontaneous reaction
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	3					$+5.0 \pm 0.4$			68	H ₂ O catalyzed reaction
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r 0	$Sc(tmp)_{6}^{3+} + tmp$	CD ₃ NO ₂	26 			-18.7 ± 1.1	-2.4 ± 1.2		15 15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	cis-TiCl, 21, +1,	0031002	77 ± 01 ee_	2.3	ca. 10	177 H 0.07-			61 06	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$L = Me_{oS}$	CH ₆ Cl ₆	-55			+H	-#		1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$L = Me_2Se$	CH2CI2	-45			+H	$+8.5 \pm 0.9$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	L = tmp	CHC1 ₃	12			$+17.5 \pm 1.2$	$+2.6 \pm 1.1$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	$Ti(H_20)_6^{3+} + H_20$	H_2O	0^{-25}	2.4	3×10	-12.1 ± 0.4	-1.9 ± 0.4		91	2-3 m CF ₃ SO ₃ H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	$VO(DMSO)_{5}$ ** + DMSO	CD3NO2	13	1.4 7 7	15	-5.3 ± 0.4			76	$\mu = 0.03 \text{ M} (\text{CIO}_4)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 1	$V(H_2U)_{6}^{6} + H_2U$			0.2		-9.3 ± 0.5			93 00	CI meaium
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>c</u> 2		H ₂ O	63-85	9.5 9.5	×	-10.1 ± 0.5	-11 + 03		66 70	2m CF.SO.H
$ \begin{array}{ccccc} mer VCl_0(CH_2CN)_+ CH_3CN & CH_3NO_3 & Table & Th_3 $	2		0211	200	i	:	***			5	$\mu = 2-9 m (CF_{3}SO_{3})$
$ \begin{array}{ccccc} {\rm mutually} {\rm prase-CH}_{3}{\rm CN} \\ {\rm mutually} {\rm prase-CH}_{3}{\rm CN} \\ {\rm translow} {\rm cCi}_{1} {\rm translow}_{1} {\rm translow}$		$mer-VCl_3(CH_3CN)_3 + CH_3CN$	CH ₃ NO ₂							18	-
$ \begin{array}{ccccc} CH_{CON} (Trans to CT \\ CH_{CO} (T_{F} + H_{2} O \\ CH_{C} (T_{F} O) \\ Trans to CT \\ C(H_{O} O) \\ Trans to CT \\ C(H_{O} O) \\ Trans to CT \\ C(H_{O} O) \\ Trans to CT \\ Tra$	17	mutually trans-CH ₃ CN					+6.1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	CH ₃ CN trans to Cl ⁻	(;			1					
$ \begin{array}{cccc} C(H_{2}(0)_{6}^{w}+H_{2}(0) & H_{2}(0) & H_{$	19	$V(H_2O)_6^{24} + H_2O$	H_2^{10}	11 1	2.5	13	-4.1 ± 0.1			93, 95 50	$\mu \sim 2 \text{ M (CI)}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ន្តរ	$Cr(H_2U)_{e^{-1}} + H_2U$		45	4.0	0 9	-9.6 ± 0.1	$+0.2 \pm 0.2$		96 8	$\mu = 0.7 m (CIO_4)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	$V(H_0)_{0} = T_{0}$		40 7 8	9.4 7.7	000	-6.0 + 0.0			02	$\mu = 0.1 m (0.04)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18		H ₂ O	5 5 5	222	>10	-6.0 ± 0.6			5 86	0.06-0.1 m HClO.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24		H ₂ 0	9	2.5	>10	-6.3 ± 0.5			98	0.06-0.1 m HClO
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25		H_2^{-0}	103	2.5	>10	-4.3 ± 0.4			98	0.06-0.1 m HCIO
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	$Mn(CH_3OH)_{6}^{2+} + CH_3OH$	CH ₃ OH	4	2.0	6	-5.0 ± 0.2			66	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	$Mn(CH_3CN)_{e^{2t}} + CH_3CN$	CH ₃ CN	-20 to -13	1.1	~ 10	-7.0 ± 0.4			99	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$Mn(DMF)_{6}^{2*} + DMF$	DMF	36 2	3.0		$+1.6 \pm 0.5$			100	
$ \begin{array}{ccccc} {\sf Mn}({\sf Me}_{6}({\sf tren})){\sf DMF}^{ex} + {\sf DMF} & {\sf DMF} & -10 \mbox{ and } 59 & 25 & 13 & -6 \pm 2 & 102 \\ {\sf Fe}({\sf H}_{2}0)_{6}^{wab} + {\sf H}_{2}0 & {\sf H}_{2}0 & {\sf H}_{2}0 & 110 & 2.4 & 13 & -7.0 \pm 0.2 & 103 \\ {\sf Fe}({\sf DMF})_{6}^{wab} + {\sf DMF} & {\sf DMF} & -10 \mbox{ and } 59 & 2.5 & 13 & -7.0 \pm 0.2 & 103 \\ {\sf Fe}({\sf DMF})_{6}^{wab} + {\sf DMF} & {\sf DMF} & -18 \mbox{ b} + 127 & 20 & 10 & -3.1 \pm 0.3 & 103 \\ {\sf Fe}({\sf DMF})_{6}^{wab} + {\sf DMF} & {\sf DMF} & -18 \mbox{ b} + 127 & 20 & 10 & -9.9 \pm 0.2 & 104 \\ {\sf Fe}({\sf CH}_{3}0){\sf H}_{6}^{wab} + {\sf DMF} & {\sf DMF} & -18 \mbox{ b} + 127 & 2.0 & 10 & -9.9 \pm 0.2 & 104 \\ {\sf Fe}({\sf CH}_{3}0){\sf H}_{6}^{wab} + {\sf DMF} & {\sf DMF} & -18 \mbox{ b} + 127 & 2.0 & 10 & -9.9 \pm 0.2 & 0.9 \\ {\sf Fe}({\sf CH}_{3}0){\sf H}_{6}^{wab} + {\sf DMF} & {\sf CH}_{3}0{\sf H} & -10 & -3.1 \pm 0.3 & 0.5 \\ {\sf Fe}({\sf CH}_{3}0){\sf H}_{6}^{wab} + {\sf DMF} & {\sf CH}_{3}0{\sf H} & -10 & -3.1 \pm 0.3 & 0.5 \\ {\sf Fe}({\sf CH}_{3}0){\sf H}_{6}^{wab} + {\sf DMF} & {\sf CH}_{3}0{\sf H} & -10 & -3.1 \pm 0.3 & 0.5 \\ {\sf Fe}({\sf CH}_{3}0){\sf H}_{6}^{wab} + {\sf DMF} & {\sf DMF} & 2 \mbox{ c} 0 & -10 \ 0 & -10 \ 0 & -3.1 \pm 0.3 \ 0 & -3.1 \pm 0.3 \ 0 & -3.1 \pm 0.2 \ 0 & -3.1 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -4.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -3.2 \ 0 & -4.2 \ $	29		DMF	-3 and -10	2.0	6 ⁻	$+2.4 \pm 0.2$			101	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$Mn(Me_{6}(tren))DMF^{4} + DMF$	DMF	-10 and 59	7.5 7	13	-6 ± 2			102	
Fe(H ₂ O) ₆ U ^{H⁺ + H₂O H₂O H₁O 2.4 1.5 +1.0 ± 0.2 103 Fe(DMSO)₆³⁺ + DMSO DMF DMF 2.3 2.0 110 -3.1 ± 0.3 104 Fe(CH₃O)₆³⁺ + DMSO DMF DMF -18 to +127 2.0 10 -3.1 ± 0.3 104 Fe(CH₃O)₆³⁺ + H₂O H₂O -5 to +19 2.5 515 +3.3 ± 0.2 104 Fe(CH₃O)₆³⁺ + DMF DMF CH₃OH -2.3 2.0 6 +6.4 ± 0.2 99 Fe(CH₃O)₆³⁺ + DMF DMF 2.3 2.0 9 +0.4 ± 0.3 99 90 Fe(CH₃O)₆³⁺ + DMF DMF 2.3 2.0 9 +0.4 ± 0.3 99 96 Fe(CH₃O)₆³⁺ + DMF DMF 2.3 2.0 9 +0.4 ± 0.3 96 96 Fe(CH₃ON₆³⁺ + DMF DMF 5.5 4.0 5.5 10 101, 105 Co(H₂O)₆³⁺ + H₂O H₂O 10 1.4 +5.5 10}	5	$Fe(H_2U)_{6}^{\circ}$ + H_2U	02H	110	7.4 7	13	-0.4 ± 0.4			103	
Fe(DMF0) T - DMSO T - OME <	22	$Fe(H_2U)_5UH^{2+} + H_2U$	H ₂ U	110 5 35	7.4 7	13	$+7.0 \pm 0.7$			103	11
Fe(HyON) Function Form	33	re(DMSO)6° + DMSO B_(DARE)3+ , DARE	Demu	0-30	0.2	29	-3.1 ± 1.5			104	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	$Fe(DMF)_{6}^{e_{1}} + DMF$		-18 10 +12/	0.2 0	η,	2.0 ± 2.0			401	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	88	Fe(CH ₃ UH) ₅ (UCH ₃) ^{**} + CH ₃ UH E-M ON 2+ 1 M O	CH ₃ OH	42-43 5 4- 110	7.0 7	0 /12	$+0.4 \pm 0.2$			104	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	88	$Fe(H_2U)_{6}^{**} + H_2U$		-01 0-	0.2	014	$+3.8 \pm 0.2$			0 0 0	
FetChaptword Chaptword Chaptword Contraction	3	Fe(CH ₃ UH) ^{6 + CH₃UH E₂(CH CN) ²⁴ J CH CN}		-23	0.2	ي 10	$+0.4 \pm 0.3$			93 93	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	88	Fe(UII3UN)6 T UI3UN Fo(DMF) 2+ A DMF	DMF	01-01 61-	1.1 9 0	or∼ o	10.0 ± 0.0			101 105	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	Count) DME3+ T DME	DMF	25 AULU 12		יינ	$+3.9 \pm 0.1$			106	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	₹ 5	$C_0(\mathbf{MI}_3)_{\rm EDME}$ T DIME	H O	-10 to ±34	р. 1 1	о Х15	10.1 1 10.1			80	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5		H ₂ O		9 7	14	$+55 \pm 0.6$			107	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14		H ₂ O	20	1.2	14	$+5.2 \pm 0.7$			107	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	44	$C_0(CH_sCN)_s^{2+} + CH_sCN$	CHCN	13	2.0	H	$+7.7 \pm 1.7$			67	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	45		CHCN	-0.8	1.5	~ 12	$+6.7 \pm 0.4$			108	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	46	$C_0(tmc)(CH_aCN)^{2+} + CH_aCN$	CH _s CN	-25	1.5	6	-9.6 ± 0.5			109	
Co(DMF) ₈ ²⁺ + DMF DMF 23 2.0 \sim 14 +6.7 ± 0.3 Co(Me ₆ (tren))DMF ²⁺ + DMF DMF 99 and 100 2.5 13 -2.7 ± 0.2	47	$C_0(CH_3OH)_{s}^{2+} + CH_3OH$	CH _s OH	9	2.0	~ 13	-#			110	
$Co(Me_{s}(tren))DMF^{2*} + DMF$ DMF 99 and 100 2.5 13 -2.7 ± 0.2	48	$C_0(DMF)_{k^{2+}}^{2+} + DMF$	DMF	23		~ 14	+			110	
	49	$Co(Me_{c}(tren))DMF^{2+} + DMF$	DMF	00 and 100		11	H			100	

556 Chemical Reviews, 1989, Vol. 89, No. 3

	$\mu = 0.1 - 0.3 \ m \ (ClO_4^{-})$	[H⁺] ≤ 3 m (HClO₄) [H⁺] ≤ 3 m (HClO₄)	0.012 M CF ₃ SO ₃ H 0.05 M acid 0.8-1.7 m HCIO ₄ , $\mu = 2.0-2.6 m$ (CIO ₄ ⁻)	2 m HCIO4 2 m HCIO4 2 m HCIO4 2 m HCIO4
18	112 98 109 114 110 110 110	1115 116 116 117 117 117	117, 118 119 106 120 121 121 121 121 121 121	15 15 15 123 15, 124 68 68 68 125 68 125
	3.3 ± 0.5	+5.5 ± 0.9 +2.6 ± 2.7 +6.6 ± 1.2 +0.7 ± 1.6 +2.0 ± 1.5 +3.7 ± 0.7	-4.2 ± 1.0	-3.9 ± 1.1 -5.9 ± 1.0 $+13.9 \pm 0.6$ $+4.1 \pm 1.8$ $+3.2 \pm 0.6$ $+5.9 \pm 1.0$ $+3.8 \pm 1.4$ $+8.1 \pm 1.9$
+6.8 +7.9 +12.9 +15.6 +16.8	-12.03 +7.2 ± 0.6 +7.2 ± 0.3 +7.1 ± 0.2 +7.3 ± 0.3 +7.3 ± 0.3 +7.3 ± 0.3 +7.3 ± 0.3 +11.4 ± 0.6 +11.4 ± 0.6 +11.4 ± 0.6 +5.3 ± 0.3 +6.5 ± 0.2	$\begin{array}{c} +8.3 \pm 0.4 \\ +5.0 \pm 0.5 \\ +6.2 \pm 1.4 \\ +13.1 \pm 1.0 \\ +7.9 \pm 1.6 \\ +7.9 \pm 1.6 \\ +20.7 \pm 0.3 \\ +20.7 \pm 0.3 \\ +19.5 \pm 1.1 \\ +19.5 \pm 1.7 \\ +15.2 \pm 1.7 \\ +20.5 \pm 0.7 \end{array}$	$+17.7 \pm 1.4$ -12.1 ± 1.0 -4.0 ± 0.1 -1.4 -2.2 ± 0.2 -2.2 ± 0.2 -7.1 ± 0.5 -8.4 ± 0.3 -7.2 ± 0.6 -5.4 ± 0.1 $+11 \pm 2$	$\begin{array}{c} -22.8 \pm 1.1 \\ -20.0 \pm 1.7 \\ +38.4 \pm 0.7 \\ +38.4 \pm 0.7 \\ +24.7 \pm 1.7 \\ +18.2 \pm 0.9 \\ +27.2 \pm 1.4 \\ +30.0 \pm 1.5 \\ +5.2 \pm 0.6 \\ -5.7 \pm 0.6 \\ -5.7 \pm 0.6 \\ -5.7 \pm 0.6 \\ +6.0 \pm 0.4 \\ +6.0 \pm 0.4 \\ +5.2 \pm 0.5 \\ -6.9 \pm 0.5 \\ -6.9 \pm 0.5 \\ -6.9 \pm 0.4 \end{array}$
	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$		11 11 11 11 11 11 11 11 11 11 11 11 11	$\sim 10 \ \sim 10 \ 9 \ 117 $
	5 2 0 0 1 1 2 5 9 5 5 0 5 1 1 2 5 9 5 5 0 5 5 1 1 5 5 9 5 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.0 2.0 2.5 2.5 2.5	2.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.5 2.0 2.5 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5.5 2.5 5.5 5
25	l.	-62 22-70 62 46 46 13 13 13 13 18	56 51 53 53 54 53 55 54 56 57 57 57 57 57 57 57 57 57 57 57 57 57	50 62 -48 and -50 -20 -10 -10 -11 -37 -37 to -33 -37 to -33 -34 -34 -34 -34 -34 -34 -34 -34 -34
CDCI3 CDCI3/ CD3NO2 CD3NO2 CD3NO2 CD3NO2 CD3NO2	CCCC HAO HAO CHACN NHA DMF DMF DMF DMF	CH ₃ OH H ₂ O CH ₃ NO ₂ CH ₃ NO ₂ CHCI ₃ CC CHCI ₃ CC CHCI ₃ CC CHCI ₃ CC	CH,Cl, CH,Cl, DMF DMF DMF DMF H,O CH,Cl, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL, CH,CL,CL, CH,CL,CL,CL,CL,CL,CL,CL,CL,CL,CL,CL,CL,CL,	CD ₃ NO ₃ CH ₂ Cl ₂ CH ₂ Cl ₂ CH ₂ Cl ₂ CD ₃ NO ₂ CD ₃ NO ₂ H ₂ O CD ₃ NO ₂ H ₂ O CD ₃ NO ₂
$Co(CH_3)(dmg)_2L + L$ $L = MeOH$ $L = Me_2NCHO$ $L = Me_2NCHO$ $L = Me_2NCHS$ $L = MeO_3P$ $L = (MeO)_3P$	$Co(PPh_{3})_{3}B_{2} + PPh_{3}$ Ni(H ₂ O) ₆ ³⁺ + H ₂ O Ni(CH ₃ CN) ₆ ²⁺ + CH ₃ CN Ni(tmo)(CH ₃ CN) ³⁺ + CH ₃ CN Ni(NH ₃) ₆ ³⁺ + NH ₃ Ni(OHF) ₆ ³⁺ + NH ₃ Ni(OMF) ₆ ³⁺ + DMF Cu(Me ₆ (tren))DMF ³⁺ + DMF Cu(Me ₆ (tren))DEF ³⁺ + DMF	Cu(CH ₃ OH) ₆ ²⁺ + CH ₃ OH Ga(H ₂ O) ₆ ⁰⁺ + H ₂ O Ga(H ₂ O) ₆ OH ²⁺ + H ₂ O Ga(DMSO) ₆ ³⁺ + H ₂ O Ga(DMSO) ₈ ³⁺ + DMF Ga(LMP) ₆ ³⁺ + LMF Ga(LMP) ₈ ³⁺ + LMF L = Me ₂ O L = Me ₂ O L = Me ₂ O L = Me ₂ CCN L = Me ₂ CCN	$L = (Me_{S}M)_{3}PS$ NbBr ₅ ·Me_{S} + Me_{S} NbBr ₆ ·Me_{S} + Me_{S} Ru(NH ₃) ₆ H ₂ O ⁴⁺ + H ₂ O Rh(NH ₃) ₅ H ₂ O ⁴⁺ + DMF Pd(H ₂ O) ₄ ⁴⁺ + H ₂ O trans-Pd(DMS) ₂ Cl ₂ + DMS Pd(2-methallyl)Cl(PPh ₃), Pd(2-methallyl)Cl(PPh ₃),	2-methallyl exchange $\ln(tmp)_{6}^{8+} + tmp$ cis-SnCl ₄ ·2Me ₂ S + Me ₂ S SbCl ₆ ·L + L L = Me ₅ CN L = Me ₅ CO L = Me ₅ O L = Me ₂ O L = Me ₂ O L = Me ₂ O L = Me ₂ O D = Me ₂ O L = Me ₂ O SbCl ₆ ·L + L L = Me ₂ O L = Me ₂ O L = Me ₂ O D = Me ₂ O L = Me ₂ O D = Me_2O D = Me_2O D = Me_2O D = Me_2O D = Me_2O D = Me_2O
51 53 55 56		67 68 69 69 71 72 73 73 72 73	82 81 23 24 24 24 24 24 24 24 24 24 24 24 24 24	88 88 92 93 93 94 95 95 95 95 95 95 95 95 95 95 95 95 95

(Continued)	
-	1
TABLE	

TOPT										
no.	reaction	solvent	T, °C	<i>P</i> , kbar	no. of data	ΔV^* , $\operatorname{cm}^3 \operatorname{mol}^{-1}$	$\Deltaeta^{*}, \ { m cm}^3 { m mol}^{-1} \ { m kbar}^{-1}$	$\Delta V, \ cm^3 mol^{-1}$ (method)	ref	remarks
		014 000				00			ç	
103	$Er(DMF)_{g^{*+}} + DMF$	CD ₃ NO ₂	-37 to -32	2.0		$+5.4 \pm 0.3$			80	
104	$Tm(H_{0}0)_{3}^{3+} + H_{0}0$	$H_{2}O$	-4	2.5	10	-6.0 ± 0.8			125	2 m HCI04
105	$Tm(DMF)_{s}^{3+} + DMF$	CD ₃ NO ₂	-18	2.0		$+7.4 \pm 0.3$			68	
106	$Yb(DMF)_{a}^{3+} + DMF$	CD ₃ NO,	-38 to -33	2.0		$+11.8 \pm 0.4$	$+2.0 \pm 0.9$		68	
	TaCle-L + L	CH ₂ Cl ₂		2.5	6-8				117	
107	I. = Me.O	4	37			$+27.8 \pm 1.2$	$+8.3 \pm 1.3$			
108	$I_{i} = Me_{i}S$		11			-19.8 ± 0.9	-5.3 ± 0.8			
81	$I = M_{0} S_{0}$		15			-187 + 10	-59 + 10			
110	$L = Me_2Oe$		61			-10.7 ± 0.8	0.1 - 0.0			
110			14	20	0.7	0.0 # 1.01-			117	
		CH2U2		0.2	0.0	1905 1 0 0	201201		111	
111	$L = Me_2O$		= :			$+30.0 \pm 0.0$	10.0 H 0.0			
112	$L = Me_2S$		17			-12.6 ± 0.8	-0.3 ± 0.7			
113	$L = Me_{sSe}$		12			-13.6 ± 0.8				
114	$L = Me_{\bullet}Te$		34			-16.4 ± 0.7	-3.1 ± 0.7			
115	$Pt(H_2O)_{4}^{2^{4}} + H_2O$	H_2O	24	2.3	9	-4.6 ± 0.2			126	1.5 m HClO4,
										$\mu = 2.3 m (CIO_4)$
			Ligan	d Subst	itution	Ligand Substitution Reactions				
116	Al^{3+} + Hipt $\rightarrow Al(ipt)^{2+}$ + H ⁺	DMSO	40	1.2	9	$+12.2 \pm 1.0$			127	$\mu = 0.19 \ m \ (\text{ClO}_4^-)$
		C	10	00	L				100	in motion
117	$V_{10}U_{28}$ $\xrightarrow{\cdots}$ VU_{2}	H_2O	97	2.0	c	$+16.3 \pm 1.4$ $+14.5 \pm 0.9$			120	in water in huffer
	-110					T 14.0 F 0.5				
118	$V_{10}O_{28}^{6-} \xrightarrow{OH} HVO_{4}^{2-} + VO_{4}^{3-}$					-4.1 ± 0.6			128	
119	$V(H_2O)_6^{2+} + SCN^- \rightarrow V(H_2O)_5SCN^+ + H_2O$	$H_{2}O$	25	1.5	6	-2.1 ± 0.8			52	$\mu = 0.5 \text{ M} (\text{ClO}_{4})$
120	$V(H_2O)_5SCN^+ + H_2O \rightarrow$	H_2O	25	1.5	6	-11.5 ± 0.9			52	$\mu = 0.5 \text{ M} (\text{CIO}_4)$
	$V(H_2O)_{6^{+}}^{2^{+}} + SCN^{-}$	Он	95						199	$\mu = 0.1 \text{ M} (\text{KNO})$
101	$\nabla f_2 \nabla f_7 + D - F D \nabla f \nabla 0_3 + \nabla t \nabla 4$	1120	64	1 76	17	-170+06				
121					7					
122	$B = NH_3$			1.3	F1 9	-19.2 ± 0.9				
123	$\mathbf{B} = \mathbf{H}_{0}\mathbf{U}$			1.75	01 9	-24.3 ± 0.3				
124	B = 2,6-lutidine	0.11	ŝ	1.73	2.	н-			001	
125	$Cr(NH_3)_{6}H_2O^{a_1} + SCN^{-1}$	H ₂ U	00	0.1	4	-4.9 ± 0.6			130	$\mu = 1.0 \text{ M} (0.04)$
<i>3</i> 01	Cr(INII3)6NC3-1 + II2U		Ę0	r L	-	-94+13			130	" = 0.3 M (ClO. ⁻)
197	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	H.O	5	01	÷	$+74 \pm 01$			131	$[H^+] = 0.1 M_{\odot}$
171	$C_{1}(\mu\mu\mu)(H_{1})NCS^{+} + H_{0}$	0211	10	2	5					u = 1.0 M
	$C_{\Gamma}(NH_{\circ})_{L}^{3+} + H_{\circ}O \rightarrow C_{\Gamma}(NH_{\circ})_{L}^{3+} + I_{\circ}O$	0°H							132	
198	$I_{i} = DMSO$	> 7				-3.2				
120	I. = OCHNH.					-4.8				
130	$I_{i} = 0.000$					-7.4				
131	$L = OC(NH_s),$					-8.2				
132	$I_{f} = OC(NHCH_{s}),$					-3.8				
133	$Cr(NH_3)_5Br^{2+} + H_2^{-0} \rightarrow$	H_2O	25	2.0		-9.3 ± 2.0			133	0.1 M HClO ₄
	$Cr(NH_3)_{6}H_2O^{3+} + Br^{-}$									
134						L^{-}			133	U.I. M. HCIO4, 10-3 M. Napes
135						4-			133	0.1 M HClO4
										5×10^{-3} M NaPES
136						4			133	0.1 M HCIO.
						¢			100	10 ° M (C4H9)4NFES
137						5			133	0.1 MHCIO4, 10 ⁻³ M NaPSS
138	$Cr(NH_2CH_3)_6Cl^{2+} + H_2O \rightarrow$	H_2O	70	1.5	4	$+0.5 \pm 0.6$			134	$\mu = 0.1 \text{ M } (\text{ClO}_4^-)$
	$C_{r}(NH_{s}CH_{s})_{s}H_{s}O^{s+} + CT$			1 1	t					
139	$Cr(NCS)_{\delta}^{r}$ + $H_{2}O \rightarrow Cr(NCS)_{r}H_{r}O^{2r}$ + SCN^{-}	H_2O	25	1.5		+2.9 ± 0.8			• 130	0.1 M NaUH

$[H^+] = 0.1 M,$	$\mu = 1.0 \text{ M}$ 1 M HClO ₄	3 M HClO4	0.5 M HClO ₄					$[H^+] = 0.3 M,$	$\mu = 0.6 \text{ M}$		$\mu = 0.3 \text{ M} (\text{ClO}_4^-)$	$\mu = 0.1 \text{ M (ClO4-),}$	$\mu = 0.1 \text{ M (ClO_4^-)},$	$\mu \to 0$ $\mu \to 0$	$\mu \le 0.15 \ m$ $\mu = 0.3 \ m \ (ClO_4^-)$	$\mu = 0.1 \text{ M (ClO_4^-)}$	$\mu = 0.01 \text{ M} (\text{ClO}_4^-)$	$\mu = 1.5 \ m \ (\text{ClO}_4^-)$	11	$\mu = 0$ $\mu = 0.1 M (Cl0_4)$	$\mu = 0.5 \text{ M} (\text{ClO}_4^-)$ $\mu = 1.0 \text{ M} (\text{ClO}_4^-)$	$\mu = 1.5 \text{ M } (\text{ClO}_4^-)$ $\mu = 1.5 m (\text{ClO}_4^-)$		= 2.0 M	$\mu = 2.0 \text{ m (CIO4})$ $\mu = 1.0 \text{ m (CIO4})$ $\mu = 1.0 \text{ m (CIO4})$
131	136	137	137	138		138		139	140	140	141	142, 143	143	144 144	145 141	142, 143	142	146	147	148, 149	148 148	148 146	151	152 152	152 153 153
											$+3.0 \pm 0.4$ (a)	+4.7 ± 0.3 (a)		+32.8 (b) +25.2 (b)) ® ($+7.8 \pm 0.2$ (a) $+7.6 \pm 0.3$ (a)	± 0.2 (a)			T0.1 ± 0.2 (a)
$+8.2 \pm 0.4$	-6.3 ± 0.4	$+1.7 \pm 0.7$	$+2.4 \pm 0.6$	+2.1	+2.2 +2.2	+2.3 +1.4	+1.7	+1.9 -1.7 ± 1.0	$+14.7 \pm 0.7$	$+14.0 \pm 0.6$	-1.2 ± 0.2	-3.4 ± 0.7	-1.3 ± 0.3		$+12.9 \pm 0.8$ -4.1 ± 0.4	-7.7 ± 2.2	-10.1 ± 0.4	-6.1 ± 1.0	+6.7 ± 0.4	$+4.3 \pm 0.6$		-6.1 ± 1.0	$^{-12}$ -4.5 ± 1.1	-19 ± 4	-8.7 ± 0.8 -10.0 ± 1.4
5	8	c,	ŝ	5		5		5	5	5	5	5			5	5	11	8° ∼	τς τ	* * *	4 4	4 ~8	5	രഹ	\sim^{10}
1.0	1.7	1.4	1.4	2.0		2.0		1.0	1.5	1.5	2.0	1.0			1.5 2.0	1.0	2.0	1.5	2.0	12	1.2	$1.2 \\ 1.5$	2.8	0 00 0 1 0 0	1.5 1.5
15	50	45	65	15	20 25	30 15	22 20 25 20	30 15	55	45	21	15		25 25	25 21	15	25	25	20 25	3 23 2	25	25 25	25 95	3 23 F	25 25
H_2O	H_2O	H_2O	H_2O	H_2O		H_2O		H_2O	(CH ₂ CI) ₂	(CH ₂ CI) ₂	H_2O	H_2O		H_20 H_20	DMF H_2O	H_2O	H_2O	H_2O					H_2O	H2O H2O	H20 H20
140 $\operatorname{Cr}(\operatorname{tpps})(\operatorname{H}_2O)\operatorname{NCS}^{4-} + \operatorname{H}_2O \rightarrow \operatorname{Cr}_{(4,2,2,2)}(1,0) \xrightarrow{3-} 1 \xrightarrow{5-} 1 $	11 $Cr(C_{2}O_{3})^{2}$ + H ₂ O \rightarrow 12 $Cr(C_{2}O_{3})^{2}$ + H ₂ O \rightarrow $Cr(C_{3}O_{3})^{2}(H_{2}O_{3})^{2}$	$142 cis-Cr(C_3(C_3)(J_1^{-1}C_3)) + C_2(J_1^{-1}C_3) + C_2(J_2^{-1}C_3) + C_2(J_1^{-1}C_3) + C_2(J_1^{-1$	143 cis-Cr(CH2C)(H_2 (H_2)) $Cr(CH2C)(24)(H_2$)) $Cr(CH2C)(14, 0) + \pm CH2C) \rightarrow 0$	144 $trans-Cr(a)_{2}r_{2}$, $H_{2}O_{2}$		14' 148 $trans-Cr(tn)_{2}Br_{2}^{+} + H_{2}O \rightarrow trans-Cr(tn)_{1}H_{-}O(Bn_{2}^{+} + Bn_{2})$		$\begin{array}{ccc} & \operatorname{Cr}(\mathrm{NH}_{3})_{5}\mathrm{Cl}^{2*} + \mathrm{H}_{2}\mathrm{O} \rightarrow \\ & \operatorname{Cr}(\mathrm{NH}_{3})_{+}\mathrm{H}_{2}\mathrm{O}^{3*} + \mathrm{Cr}_{1-} \end{array}$	ō		$5 \operatorname{Mn}(H_2O)_{6}^{24} + \operatorname{bpy}_{92}$	N		8 $Mn(H_2O)_{s}^{s+} + edta^{t-} \rightarrow Mn(edta)^{2-} + H_2O$ 9 $Mn(H_2O)_{s}^{s+} + Hedta^{3-} \rightarrow Mn(H_2O)_{s}^{s+} + H_2O$	ΣZ		Σ			2 8			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Fe(H ₂ O) Fe(H ₂ O)
Ţ	141	1	1	ľ	11	147 148	149 150	152	153	154	155	156	157	158 159	160 161	162	163	164	165 166	167	169	171	172 173	174	176

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	reaction	solvent	T, °C	P, kbar	no. of data	$\Delta V^{*}, \ \mathrm{cm}^{3} \mathrm{mol}^{-1}$	cm ³ mol ⁻¹ kbar ⁻¹	cm ³ mol ⁻¹ (method)	ref	remarks
H ₀ 25 15 ~ 8 $+8.5\pm1.2$ $+1.0\pm0.016$ 146 H ₀ 25 12 4 $+5.4\pm1.5$ $+17.1\pm1.016$ 147 H ₀ 25 12 4 $+5.4\pm1.5$ $+17.1\pm1.06$ 147 H ₀ 25 12 4 $+5.4\pm1.5$ $+17.1\pm1.06$ 148 H ₀ 25 12 4 $+5.4\pm1.5$ $+17.1\pm0.6$ 148 H ₀ 25 12 4 $+8.8\pm1.0$ $+11.2\pm0.6$ 148 H ₀ 25 15 ~ 10 $+11.2\pm0.6$ 148 14.5 H ₀ 25 15 ~ 10 $+11.2\pm0.6$ 153 153 H ₀ 25 15 ~ 10 $+11.2\pm0.6$ 153 153 DMSO 25 20 6 $+10.2\pm0.2$ 153 153 DMSO 25 15 ~ 10 $+11.2\pm0.6$ 153 153 DMSO 25 12 4 </td <td>$\operatorname{Fe}(\operatorname{H}_2O)_6^{3+} \rightleftharpoons \operatorname{Fe}(\operatorname{H}_2O)_6O\operatorname{H}^{2+} + \operatorname{H}^+$</td> <td>H₂O</td> <td>25</td> <td>1.2</td> <td>4</td> <td></td> <td></td> <td>+ 0.1 + 0.1 + 0.1</td> <td>154</td> <td>= 0.1 M = 0.1 M = 0.2 M = 0.5 M = 1.0 M</td>	$\operatorname{Fe}(\operatorname{H}_2O)_6^{3+} \rightleftharpoons \operatorname{Fe}(\operatorname{H}_2O)_6O\operatorname{H}^{2+} + \operatorname{H}^+$	H ₂ O	25	1.2	4			+ 0.1 + 0.1 + 0.1	154	= 0.1 M = 0.1 M = 0.2 M = 0.5 M = 1.0 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fe(H_2O)_5OH^{2+} + SCN^- \rightarrow Fe(H_2O)_4(SCN)OH^+ + H_2O$	H_2O	25	1.5	8~	+8.5 ± 1.2		∓ 0.1	146	= 2.0 M = 1.5 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		H_2O	20 95	2.0	<u>ہ</u> ت	0~			147	= 0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		H ₂ 0	3 23	1.2	1 4	-++		± 0.9		= 0.1 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		H ₂ 0	25 95	1.2	4 -			± 0.5	148	= 0.5 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		H ₂ O	3 23	1.2	4 4			± 0.5	140 148	- 1.0 M = 1.5 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe(H _• O) _* OH ²⁺ + Cl ⁻ →	Н,0 Н,0	25 25	2.8	л С	+			150 151	II
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fe(H_2O)_4(CI)OH^+ + H_2O$		10) L	, ,	-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	re(H ₂ O) ₅ OH ² + H1pt → Fe(H ₂ O),int ²⁺ + H ₂ O	H2U	62	1.5	~ 10	H			153	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$F_{e(T_2O)_bOH^{2\mu}} + H_{2ipt}$	H_2O	25	1.5	~ 10	-10.0 ± 1.2			153	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fe(H_2O)_5De^{-7} + H_3O$ $Fe(H_2O)_5OH^{2+} + Hahx \rightarrow$	H_2O	25	1.5	80 ~	+7.7 ± 0.6			153	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fe(H_2O)_{6ahx^{2+}} + H_2O$		ł	0					1	(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe + SUN → Fe(SUN) Fe ³⁺ + Hint → Fe(int) ²⁺	DMSO	25 25	9 0 2 0	<u>ب</u> د	$+3.3 \pm 0.6$ +10 4 + 1 7			155 155	= 0.2 m = 0.9 m
	(adv)a adver a at	DMF	3 23	2.0	ي د	$+5.0 \pm 0.4$			155	= 0.2 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe ³⁺ + Hahx → Fe(ahx) ²⁺	DMSO	25	2.0	9	$+3.0 \pm 0.3$			155	= 0.2 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		DMF	25	2.0	9	-0.8 ± 0.2			155	= 0.2 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fe(SCN)^{2+} \rightarrow Fe^{3+} + SCN^{-}$	H_2O	3 5	2.0	9	-15.0 ± 1.2			155	= 0.2 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 8 8 8 8 9 1 8 8 8 8 9 1	DMSU	53 5	2.0	ع	-8.5 ± 1.4			155	= 0.2 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		H_O	8 £	2.8	ہ <i>ہ</i>	H			148	W 0.7 =
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fe(H_2O)_4(SCN)OH^+ + H^+$	0211	67	1	۲			1	041	1
H_2O 25 1.0 5 $+3.4 \pm 0.6$ -110 ± 0.2 143, 156 1 $+ H_2O$ H_2O 23 4.5 6 $+13.5 \pm 1.5$ 143 143 157 $+ H_2O$ H_2O 23 4.5 6 $+13.5 \pm 1.5$ 143 157 $- CH_3CN$ 25 2.0 9 $+13.7 \pm 0.9$ 158 158 N CH_3CN 25 2.0 9 $+13.7 \pm 0.9$ 158 N CH_3CN 25 2.0 9 $+13.7 \pm 0.9$ 158 N DMSO 30 0.8 10 $+27.2 \pm 1.5$ 158 N DMSO 36 10 $+27.2 \pm 1.5$ 159 159 H_2O 30 0.8 10 $+27.2 \pm 1.5$ 159 159 H_2O 30 21.2 6 $+12.3 \pm 0.5$ 159 159 H_2O 35 1.4 5 $+14.48 \pm 0.7$ 150 159 H_2O 35 1.4 5 $+14.48 \pm 0.7$ 150 1								± 0.4 ± 0.2 ± 0.2		$\mu = 0.1 \text{ M } (\text{CIO}_{4})$ $\mu = 0.5 \text{ M } (\text{CIO}_{4})$ $\mu = 1.0 \text{ M } (\text{CIO}_{4})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0 11	or	<	L	001101		± 0.2	0.11 0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fe(n_2O)_6^{-1} + verpy^{-1}$ Fe(terpy)(H ₂ O) ₂ ²⁺ + H ₂ O	П20	07	1.0	o	±3.4 ± 0.0			143, 190	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a 5 4 7					+H			143	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} Fe(CN)_{5}H_{2}O^{3-}+CN^{-}\rightarrow Fe(CN)_{6}^{4-}+H_{2}O\\ Fe(tntdt)(CH_{*}CN)_{*}^{2+}+I_{m}\rightarrow \end{array}$	H ₂ O CH ₂ CN	23 25	4.5 2.0	96	$+13.5 \pm 1.5$ $+13.7 \pm 0.9$			157 158	[M] ≫ [LJ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fe(tntdt)(Im)CH_{s}CN^{2+} + CH_{s}CN$	10810	ì	i	\$				001	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Fe(tptdt)(CH_{sCN})_{2^{+}}^{2^{+}} + SCN^{-} \rightarrow Fe(tptdt)(CH_{sCN})_{2^{+}}^{2^{+}} + SCN^{-} \rightarrow Fe(tptdt)(CH_{sCN})_{CH}^{2^{+}} + CH^{-} CH^{-}$	CH ₃ CN	25	2.0	6	÷			158	
DMSO 35 1.2 6 +21.8 \pm 0.9 159 H_2O 30 2.1 6 +12.3 \pm 0.5 160 H_2O 35 2.1 6 +12.3 \pm 0.5 160 H_2O 35 1.4 5 +14.8 \pm 0.7 160 h_2O 35 1.4 5 +13.3 \pm 0.7 160	Fe(tptdp/ms/ms/ms/ms/ms/ms/ms/ms/ms/ms/ms/ms/ms/	DMSO	30	0.8	10	H			159	
H_2O 30 2.1 6 +12.3 ± 0.5 160 H_2O 35 1.4 5 +14.8 ± 0.7 160 D_aO 35 1.4 5 +13.3 ± 0.7 160	$\mathbf{Fe}(\mathbf{rptdt})(\mathbf{Im})\mathbf{DMSO}^{-1} + \mathbf{DMSO}^{-1}$ $\mathbf{Fe}(\mathbf{rptdt})(\mathbf{Im})\mathbf{DMSO}^{2+1} + \mathbf{Im} \rightarrow \mathbf{Fe}(\mathbf{rptdt})(\mathbf{Im})\mathbf{Tm} + \mathbf{Tm} \rightarrow \mathbf{Tm}$	DMSO	35	1.2	9	+H			159	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	re(cptac)(Im)2 ⁻¹ + UMSO Re(hnu)_ ²⁺ + H ₂ O → nroducts	Н.О	30	16	ų	+193 + 05			160	
	mannard sitt . (1/1/1/2)	H ₀ O	3 %	14	מי נ	$+14.8 \pm 0.7$			160	0.01 M HCI
00 1.4 0 TIO.0 I 0.4			>>>		ر د				221	

TABLE I (Continued)

0.01 M HCl 1.0 M HCl 0.01 M HCl 1.0 M HCl	1.0 M HCl 0.1 M CF ₃ SO ₃ H $\mu = 0.1$ M $\mu = 0.1$ M [OH ⁻] = 0.07 M,	$\mu = 0.33 \text{ M}$ [OH ⁻] = 0.07 M, $\mu = 0.33 \text{ M}$	$[OH^{-}] = 0.07 M,$ H = 0.33 M	$\mu = 0.33 \text{ M}$ [OH ⁻] = 0.07 M, $\mu = 0.33 \text{ M}$		$[OH^-] = 0.07 M,$ $\mu = 0.33 M$	$[0H^{-}] = 0.07 M,$ $\mu = 0.33 M$ $[0H^{-}] = 0.07 M.$	$\mu = 0.33 \text{ M}$ [OH ⁻] = 0.07 M,	0.33 = µ	1, 33	= 0.33 M = $\mu = 0.33$	$[OH^{-}] = \mu = 0.33 \text{ M}$ $[OH^{-}] = \mu = 0.33 \text{ M}$	$= \mu = 0.33$ = 0.1 M,	$\mu = 0.33 \text{ M}$			$\mu = 0.1 \text{ M}$ $\mu = 0.5 \text{ M} (\text{ClO}_4)$	$\mu = 0.5 \text{ M} (\text{ClO}_4^-)$	$\mu = 0.5 \text{ M} (\text{ClO}_{4})$	$\mu = 0.5 \text{ M} (\text{ClO}_4)$			$\mu = 2 \text{ M (ClO_4^-)}$	$\mu = 2 \mathrm{M} \mathrm{(ClO_4^-)}$
161	161 162 162 163, 164	164	164	164	163, 164	164	164 164	164	163, 164	164 164 163, 164	164	164 164	164		167, 168 167, 168	-	162 169	169	169	169	170	170	130, 171	130
														0 ± 2 (a)									+11.6 (b)	+19.2 (b)
$+15.5 \pm 0.5$ +12.5 ± 0.7 +16.9 ± 0.6 +17.4 \pm 0.8 +17.4 ± 0.8	+13.7 ± 0.5 +14.1 ± 0.2 +19.7 ± 0.3 +21.5 ± 0.4 +11.1 ± 1.6	$+19.9 \pm 1.0$	+22.8 ± 1.8	+25 ± 2	+27 ± 3		+2/ ± 4 +15 ± 3	+18 ± 3	$+13.4 \pm 1.9$	+14.0 +6.2 ± 0.6 +5.5 ± 1.2	+6.8	$+14.1 \pm 1.1$ +14	+21 ± 3 +11.8 ± 1.6	-2 ± 2	+10	$+20.9 \pm 1.6$	$+13.6 \pm 1.0$ +20.5 ± 0.8	$+21.2 \pm 1.0$	$+20.3 \pm 1.0$	$+20.6 \pm 0.5$	+20.6	+19.4	$+1.4 \pm 0.8$	+2.3 ± 1.8
ມດາດາດາດ	ບລະລະດຸດ	er	4	4	ო	~ ~ 7	4 ი	3	4 •	4 4 0	e C	ოი	100 4		~ ~	ιO Γ	° ro	ŝ	5	5	4	4	8	4
1.4 1.4 1.4 1.4	1.4 1.4 1.4 1.34	1.01	1.18	1.34	1.34	1.34	1.34	0.68	1.34	1.34 1.34	1.34	1.34 1.34	1.34	1.1	1.4 1.4	1.4	1.4 1.4	1.4	1.4	1.4	1.0	1.4	1.8	1.5
25	36.8 25 20 36.8 25 20 20	25	25	25	25	52 b	52 F2	25	25 25	8 8 8	25	52 52	52 52 52 52	25	88	20 20	52	25	25	25	25	25	60	60
H ₂ 0	МеОН Н ₂ О Н ₂ О	30% MeOH	50% MeOH	75% MeOH	85% MeOH	94% MeUH	HUNG-7 %/I	25% DMSO		75% MeOH 75% MeOH	85% MeOH	17% t-BuOH 20% DMSO	30% DMSO 30% DMSO	33% MeOH	H ₂ O 33% MeOH	H ₂ O H O	H2O	H ₂ O	H_2O	H_2O	H_2O	H_2O	H_2O	H_2O
$\begin{array}{l} Fe(R_2by)_3^{2+}+H_2O \rightarrow products\\ R_2=4,4'-Me_2\\ R_2=4,4'-Et_2\\ R_2=5,5'-Me_2 \end{array}$	$\begin{array}{l} Fe(phen)_{3}^{24} + MeOH \rightarrow products \\ Fe(bpy)_{3}^{25} + OH^{-} \rightarrow products \\ Fe(phen)_{3}^{25} + OH^{-} \rightarrow products \\ Fe(s)_{3}^{24} + OH^{-} \rightarrow products \end{array}$								Fe(hxsb) ²⁺ + OH ⁻ - products					$Fe(fz)_{3}^{4-} + OH^{-} \rightarrow products$	re(4-Mephen) ₃ ⁴⁺ + CN ⁻ → products	$Fe(bpy)_{3}^{2+} + CN^{-} \rightarrow products$ $F_{n}(rhon)^{2+} + CN^{-} \rightarrow products$	Fe(CN) ₆ (3,5-Me ₂ Dy) ⁵ + CN ⁻ \rightarrow Fe(CN) ₁ (4, 4, 3,5-Me ₂ Dy) ⁵ + CN ⁻ \rightarrow	Fe(CN) ₆ (3,5-Me ₂ Dy) ³⁻ + $p_Z \rightarrow$ Fe(CN) ₆ (3,5-Me ₂ Dy) ³⁻ + $p_Z \rightarrow$ Fe(CN) ₅ n_2^{3-} + 3.5-Me ₂ Dy	$Fe(CN)_{5}(3,5-Me_{2}py)^{3-} + imH \rightarrow Fe(CN)_{1}imH^{3-} + 3.5-Me_{2}ny$	$Fe(CN)_{6,3}CNpy)^{3-} + CN^{-2}$ $Fe(CN)_{4-} + 3-CNNy$	$Fe(CN)_{6}(4-CNpy)^{5-} + CN^{-} \rightarrow Fe(CN)_{4} + 4-CNny$	$Fe(CN)_{6}(2-Mepz)^{3-} + CN^{-} \rightarrow Fe(CN)_{6}(2-Mepz)^{3-} + CN^{-} \rightarrow Fe(CN)^{2-} + 3 - Menz^{-}$	$Co(NH_3)_{6}H_2O^{3+} + Cl^- \rightarrow Co(NH_2)_{1}Cl^{3+} + H_{-}O$	$C_0(NH_3)_{6}H_2O^{4+} + SO_4^{2+} \rightarrow C_0(NH_3)_{6}SO_4^{4+} + H_2O$
220 221 223 224 224	226 228 228 229	230	231	232	233	234 925	236	237	238 239	240 241	242	243 244	245 246	247	248 249	250 251	252	253	254	255	256	257	258	259

TABLE	TABLE I (Continued)									
,				Ρ,	no. of	ΔV*,	$\Delta \beta^*, \ cm^3 \text{ mol}^{-1}$	ΔV , cm ³ mol ⁻¹		
no.	reaction	solvent	T, °C	kbar	data	cm ³ mol ⁻¹	kbar ⁻¹	(method)	ref	remarks
260	$C_0(NH_3)_5OH^{2+} + SO_3^{2-} \rightarrow$	H_2O	35	1.2	9	$+18.6 \pm 1.5$			172	$pH = 9.4, \mu = 0.5 M$
261	$cis(NH_{3})_{s}^{s}O_{3}^{s} + OH$ $cis(Co(en)_{s}^{s}(H_{2}O)_{3}^{s} + H_{2}^{s}C_{2}O_{4} \rightarrow$	H_2O	60	1.5	4	$+4.8 \pm 0.2$			173	$\mu = 2 \text{ M (NO_3^-)}$
262	Co(en) ₂ C ₂ O ₄ + 2H ₃ O	0°H	70	1.5	4	$+1.1 \pm 0.2$			174	2 M HCIO
263		H_{20}	09	1.5	4	$+3.5 \pm 0.8$			174	Σ
264	cis-Co(en) ₂ (H ₂ O) ₂ ^{or} + HC ₂ O ₄ ⁻ → Co(en) ₂ C ₂ O ₄ + H ₂ O + H ⁺	H ₂ O	99	1.5	4	$+14.8 \pm 0.2$			173	$\mu = 2 \text{ M} (\text{NO}_3^2)$
265	$cis-Co(en)_{2}(H_{2}O)OH^{24} + C_{2}O_{4}^{2-} \rightarrow C_{2}C_{2}C_{2} \rightarrow C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}$	H_2O	30	1.5	4	$+3.6 \pm 1.9$			173	$\mu = 2 \text{ M (NO_3^-)}$
266	$Co(en)_2(OH)C_2O_4 + H^+ \rightarrow Co(en)_2(OH)C_2O_4 + H^+ + H^+ \rightarrow CO(en)_2(OH)C_2O(en)_2(OH)C_2O(OH)C_2O(OH)C_2O(OH)C_2O(OH)C_2O(OH)C$	$\rm H_2O$	50	1.4	ũ	0 ± 1			173	$\mu = 0.4 \text{ M} (\text{NO}_3^-)$
	$Co(CN)_5 U_2^{-1} + H_2^{-1} \rightarrow Co(CN)_5 L^{3-} + U_2^{-1} \rightarrow Co(CN)_5 L^{3-} \rightarrow CO(CN)$	H_2O	40	1.5	7				175	$\mu = 1.0 \text{ M} (\text{ClO}_4^-)$
267 268	п20 L' = Br !' = Г					$+8.4 \pm 1.0$ $+9.4 \pm 1.6$				
269	$L^2 = SCN^2$					$+8.2 \pm 0.9$				
270	$Co(tpps)(H_2O)_s^3 + SCN^- \rightarrow C_2(tpps)(H_2O)_s^{3-} + SCN^- \rightarrow C_$	H_2O	20	1.0	5	$+15.4 \pm 0.6$			131	$[H^+] = 0.1 M,$
271	$Co(tppg)(H_2O)NCS' + H_2OCo(tmpp)(H_2O)_2^{6+} + SCN^{-} \rightarrow$	H_2O	25	1.2	9	+14 ± 4			176	$\mu = 1.0 \text{ m}$ $[H^+] = 0.1 m,$
010	$Co(tmpp)(H_2O)NCS^{4+} + H_2O$	Q II	00	•	Ŀ	0010011			<u> </u>	$\mu = 2.2 m$
212	$\begin{array}{c} \operatorname{Co}(\operatorname{cmpp})(\operatorname{rn}_{3}\operatorname{Cr})_{2}^{n-1} + \operatorname{So}(\operatorname{cvrn}_{3})_{2}^{n-1} \\ \operatorname{Co}(\operatorname{cmpp})(\operatorname{H}_{2}\operatorname{O})_{2}\operatorname{Co}(\operatorname{NH}_{3})_{3}^{n-1} + \operatorname{H}_{2}\operatorname{O} \\ \operatorname{Co}(\operatorname{NH}_{3})_{4} \times \operatorname{N}^{n-3} + \operatorname{H}_{2}\operatorname{O} \end{array}$	п20	77	1.4	c	0'N = 0'71+			111	$\mu = 1.0 \text{ M}$
273	$X^{n-1}_{n-1} = 0$	H ₂ O	38	1.7	4.	$+2.2 \pm 0.2$		+1.6 (b)	178, 179	0.01 M CF ₃ SO ₃ H
2/4	$\mathbf{X}^{n} = \mathbf{OHCH}_{2}^{\mathbf{CH}_3}$ $\mathbf{X}^{n-} = \mathbf{OHCH}(\mathbf{CH}_3),$	0°H	52 S	1.7	4 4	H +H		+2.2 (b) +2.9 (b)	178, 179	0.01 M CF SO.H
276	$X^{n-} = OC(NH_2)_2$	$H_{2}^{-}O$	34	1.7	4	+H		+1.2 (b)		r ~ 0 ~ r
277	$X^{n-} = OC(NH_2)(NHCH_3)$ $V^{n-} = OC(NHICH_3)$	H2O	35	1.7	4 -	$+0.3 \pm 0.3$		-1.6 (b)	178	0~1
017	$\mathbf{X}^{*} = \mathbf{U} \mathbf{C} (\mathbf{M} \mathbf{C} \mathbf{G}_3)_2$ $\mathbf{Y}^{*+} = \mathbf{D} \mathbf{C} \mathbf{H} (\mathbf{M} \mathbf{H}_2)$	н ² С	46 88	1.7	1 7	H +		+0.5 (h)	178	$\mu \sim 0$
280		0°H	48 48	1.7	* 7	++		+1.5 (b)	178	0.01 M CF SO H
281	$\mathbf{X}^{n-} = \mathbf{OCH}(\mathbf{N}(\mathbf{CH}_3)_2)$	$H_{2}^{i}O$	49	1.7	4	÷		+2.9 (b)	178	0.01 M CF ₃ SO ₃ H
282	$X^{n-} = DMSO$	H ₂ 0	41	1.7	4	+ ·		+3.1 (b)	178	0.01 M CF ₃ SO ₃ H
283	$\mathbf{Y}^{n-} = \mathbf{R}^{n-}$	H ₂ O	8 X	0.0 9.0	1.	-1.7 ± 0.7			181	$\mu = 0.1 \text{ M} (CIO_4)$
285	l i	H20	25	2.0		1			182	0.01 M HCIO,
286		H_2O	25	2.0		+1.3			182	0.01 M HClO4,
										3 × 10 ⁻ M NaPES
287		H_2O	25	2.0		+12			182	0.01 M HCIO4, 8 × 10 ⁻⁴ M NaPFS
288	$X^{n-} = SO_4^{2-}$ spontaneous reaction	H_2O	35	1.5	9	-18.3 ± 0.4		26 ± 3 (b)	183	$\mu = 1.0 \ m \ (\text{ClO}_4^-)$
289 290	$X^{n-} = SO_4^{2-}$ acid-catalyzed	${ m H_2O}{ m H_2O}$	55 35	1.0 1.5	ъ 9	-19.7 ± 0.8 -3.5 ± 0.6			183 183	$\mu = 1.0 \ m \ (\text{ClO}_4^-)$ $\mu = 1.0 \ m \ (\text{ClO}_4^-)$
291 292	$C_0(NH_3)_5O_3^+ + H_3O^+ \rightarrow C_0(NH_3)_5O_3^+ + H_3O^+ \rightarrow C_0(NH_3)_5O_3^+ + H_3O^+ \rightarrow C_0(NH_3)_5O^+ + MH_3^+ + MH_3^+ + C_0(NH_3)_5O^+ + MH_3^+ $	H ₂ 0 H ₂ 0	55 25	1.0 1.0	വവ	-3.9 ± 0.5 +6.0 ± 1.2			183 172	$\mu = 1.0 \ m \ (\text{CIO}_4^-)$ [H ⁺] = 1.5 M,
293	trans-Co(NH ₃) ₄ (NH ₂ CH ₃)Cl ₂ ¹ + NH ₂ trans-Co(NH ₃) ₄ (NH ₂ CH ₃)Cl ²⁺ + H ₂ O \rightarrow trans-Co(NH ₃) ₄ (NH ₂ CH ₃)H ₂ O ³⁺ + Cl ⁻	H_2O	49	1.7	9	-4.6 ± 0.5	-0.5 ± 0.2		184	$\mu = 2.1 M$ (CIO ₄ ⁻)

TABLE I (Continued)

= 0.1 M (ClO4 ⁻) 1 M HClO					$\mu = 0.1 \text{ M (ClO_4^-)}$		INO ₃	m (čio4)	M (Cl04 ⁻)	$t = 0.5 M (ClO_{-})$ $t = 0.6 M (ClO_{-})$	M (CIO,-)						$\mu = 0.1 \text{ M (ClO_4^-)}$ $\mu \sim 0$	M (CI04 ⁻)	.5	rở r	ט יט	$\mu = 0.1 \text{ M} (\text{ClO}_4^-)$	0.1 M (ClO4)	0.1 M (CIO)		0.1 M (ClO4-)	HNU3	M (Cl04-)	M (CIU,)	$\mu = 0.01 \text{ M HNU}_3$ 0.1 M HNO.	2	M (C10,-)	$= 0.1 \text{ M} (\text{ClO}_4^{-})$	
$\mu = 0.1 \text{ M (C)}$	0.1 M F		$n \sim 0$	$0 \sim \pi$	$\mu = 0.1$	µ = 0.1 ⊨ = 01	0.1 M F	μ = 0.1	$\mu = 0.5$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	н = 0.5 = = 0.0	2 2				$\eta \sim 0$	$\mu = 0.1$ $\mu \sim 0$	$\mu = 0.1$	pH = 2	pH = 2.5	pH = 2 pH = 2	$\mu = 0.1$	$\mu = 0.1$	li li		$\mu = 0.1 \text{ M (Cl)}$	W 10.0	$\mu = 1.0$	H = 0.1	$\mu = 0.0$			$\mu = 0.1$	
184 195	185		186	186	187	187	187	187 188				188				10, 187	10, 187 10, 187	10, 187	681 190	190	061 190	10, 187	10, 187	189 10 187	189	10, 187	10, 187	10, 187	10, 187	10, 187		187	187	
		;	-9.4 (b)	-8.6 (b)	-12.5 ± 0.9 (b)	+ 1.6 7 1.6	ריי א		-11.2 (b)	-12.4 (b) -11.8 (h)	(q) (4) (4)					-15.5 ± 2.1 (b)	-13.9 ± 1.7 (b)					-13.1 ± 0.8 (b)	-11.7 ± 1.8 (b)	(4) 9 1 4 0 11-	2	-14.9 ± 2.7 (b)	-13.1 ± 2.1 (h)			-14.3 ± 1.2 (b)		-14.5 ± 1.7 (b)	-13.1 ± 2.3 (b)	
-2.3 ± 0.4		$+5.9 \pm 0.2$ $+6.3 \pm 0.3$ $+6.0 \pm 0.5$	+15.0	+13.6	-7.3 ± 0.4	-6.2 ± 0.6 -3 ± 0.0	-5.0 ± 0.2 +5.7 ± 0.2	$+0.6 \pm 0.3$	-4.3 ± 0.2	-3.5 ± 0.6	-2.1 ± 0.1		$+3.3 \pm 0.3$	$+4.9 \pm 0.7$ $+5.4 \pm 0.5$		-1.3 ± 0.3	-1.7 ± 0.7 -1.7 ± 1.1	-1.1 ± 0.9	+0.8 +14.4	+10.5	+0.3 +1.5	-3.1 ± 0.5	-0.3 ± 0.9	+0.3 +0.3 + 0.6	+7.3	-2.8 ± 1.5	# #	-1.9 ± 0.4	- 11	$+1.0 \pm 0.4$ -2.0 ± 0.9		$+1.4 \pm 0.6$	$+3.4 \pm 0.6$	
9 -	4				-			7	ũ	5	2		5	ഹര		7		ž	ഹവ	υı	o vo		4 1	4 1	- 4	-		-	- 1	- [-		7	2	
1.7	1.7				1.5	0.1 2	1.5	1.5	2.0	2.0	1.6		2.0	2.0 1.6		1.5	1.5	1.5	2.0 2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5 1.5		1.5	1.5	
30		4 2 38 53	35	25	40	9 0	8 0	20	55	43	37		55	43 37		25	10 25	30	31	40	00 19	8	3 0	25 30	g ro	88	82	50	88	88		30	30	
H ₂ O H O	H20		H ₂ O	H ₂ O	0 ² H	о с н о	H20	H_2^{-0}				H_2O				H ₂ O	0°H	H ₂ 0	Н20 Н	H ₂ O	0°H	0,H	H2O	H20 H	H ₂ O	H ₂ O	D O H	H ₂ O	H ₂ O	0°H	•	0°H	H ₂ O	
$\begin{array}{ccc} & C_0(NH_2CH_3)_6CI^{3*} + H_3O \rightarrow \\ & C_0(NH_2CH_3)_6H_2O^{3*} + CI^{-} \\ & C_0(NH_2CH_3) I^{3*} + H_2O \rightarrow \\ & C_0(NH_2CH_3) I^{3*} + H_2O \rightarrow \end{array}$	Co(NH₂CH3)¿L° + H₂U → Co(NH"CH");H"O ³⁺ + L	$L = DMSO$ $L = DMF$ $L = CH_{S}CN$		Ŭ ŝ		$\mathbf{X}^{n} = \mathbf{B}^{T}$		cis-($\mathbf{X}^{-} = \mathbf{C}\mathbf{I}^{-}$	$X^- = Br^-$	$X^{-} = NO_{3}^{-}$	$cis-Co(NH_3)_4(OH)X^+ + H_2O \rightarrow Cis-Co(NH_3)_4(IA_0)IA^+ + X^-$			trans-Co(N_0) $Ci_2^+ + H_2O \rightarrow trans-Co(N_0)(Ci)H_2O^{2+} + Ci^-$		$N_{r} = (en)_{s}$	•	$N_4 = (pn)_2$	•		$N_4 = (Me en)_2$	$N_4 = (Et en)_2$			$N_4 = 3,2,3$ -tet				$N_4 = (KK, SS) - Z, 3, Z - tet$ N = cvclam	tre	5		trans-Co(en) ₂ (X)Y ⁺ + H ₂ O \rightarrow trans-Co(en) ₂ (X)H ₂ O ²⁺ + Y ⁻
294		295 296 297	298	299	300	28	303	304	305 306	308	309 310	5	311	313		314	315 316	317	319	320	321 322	323	325	326	328	329		332	333	335		336	337	

(Continued)	
-	
TABLE	

remarks	•	0 < ₹	2	n ~ 1					6. ULI MI INO3	0.1 M HNO.				u = 0.1 M (C 0.7)		0.1 M HClO,	0.1 M HCIO,			0~"		$n \sim 0$	0~1	2	$0 \sim \pi$			$\mu = 1.0 \text{ M} (CIO_4)$	$\mu = 0.1 M (CIO.^{-})$	u = 1.0 M (CIO.7)	0.9 M NaOH,	$\mu = 1.0 \text{ M}$	1 M HCIO		$pH = 5, \mu = 0.5 M$	[H ⁺] = 0.2 M,	$\mu = 2 M$	pπ = ο, μ = υ.ο Μ	$[H^+] = 0.05 M,$	$\mu = 2 \text{ M}$ $\mu H = 5 \ \mu = 0.5 \text{ M}$	νιτο·ο – π'ο – ττά	$[H^+] = 0.05 M,$	$\mu = 2 M$ pH = 5, $\mu = 0.5 M$		μ = 2 M
ref		186	100	98 i	191	191	101	100	190	193				10. 187	194	192	192	194		186	8 <u>1</u>	186	186	186	180	201	C/.T						136		137	137	101	151	137	137	101	137	137	137	
$\Delta ar{V}, \ { m cm}^3 { m mol}^{-1}$ (method)	/	10.4.75	-10.4 (0)			$-10.4 \pm 0.1 (0)$	110404	$(n) n \pm n \tau$						-14.2 ± 1.8 (b)						-93 (h)		-9.1 (b)	-6.7 (b)	-12.5 (b)																					
$\Delta \beta^{*}, \ cm^{3} mol^{-1} kbar^{-1}$																																													
$\Delta V^{*},$ cm ³ mol ⁻¹	00	-0.3 -0.3	1.0.0		$+0.5 \pm 0.2$	-90 ± 0.4	+0.7 + 0.9	1 +	4	$+5.3 \pm 0.7$				-0.3 ± 0.4	$+7.3 \pm 0.4$	-5.0 ± 0.4	-#	$+3.0 \pm 0.6$		6.0+	-2.9 ± 0.3	+2.9	+11.3		+3.5 ± 0.3		-70 L O F	H +	$+9.1 \pm 0.3$	$+7.6 \pm 0.6$	$+14.0 \pm 0.7$	+16.8 + 0.5	1 +1		-0.1 ± 0.3	-7.1 ± 0.9	007071	e.u = 0.41-	-4.2 ± 0.4	-14.5 ± 2.5	2.1 - D.ET	-3.8 ± 0.4	-9.4 ± 1.1	$+0.2 \pm 1.2$	
no. of data		و س		<u>ه</u> د	0 4	0 4	ი ყ	<u>م</u> د	0	4	I			7	5	5	5	5		ų) .c	9 9	5	9		Ľ	-						7		4	5	~	,	5	4	,	5	4	5	
P, kbar	00	0.2		0.2	0.4	0.7	+.1 6	7 T	r I	1.4				1.5	1.4	1.4	1.4	1.4		2.0	1.4	2.0	2.0	2.0		и -	L.J						1.5		1.5	1.0	н Д	r.1	1.0	1.5	2	1.0	1.5	1.0	
T, °C	. ¢	1 10	9	04	2 2	95 35	908	32	3	20				30	14	27	25	25		30	35	30	30	35			07	\$ \$	25	40	40	40	50	95	07	25	95	3	25	25	ì	25	25	25	
solvent	C n		271			H O	H.O	H _o O	0211	0°H	4			H_{s0}	$H_{2}^{-}O$	H_2O	H_2O	H_2O		0°H	0°H	H ₀	H_2O	$H_{2}O$	H_2O		Ч	H_O	0°H	H,0	H ₂ 0	H,O	H20	С н	П20	H_2O	H.O	0211	H_2O	0°H	~ Z	H_2O	H_2O	H_2O	
reaction	V NO - V CI-	- 1002 , 1		$V^{-} = NO + V^{-} = B^{-}$	$\Delta = M_0^2$, $I = M_1$	$X^- = CN^- V^- = Cl^-$	$\mathbf{X}^{-} = \mathbf{N}_{c}^{-} \mathbf{Y}^{-} = \mathbf{C}^{-}$	trans-Co(dtod)(N_o)C) ⁺ + H_0 \rightarrow	trans-Co(dtcd)(N _s)H _s O ²⁺ + C) ⁻	trans-Co(dtcd)(N ₃)Br ⁺ + H ₂ O \rightarrow	trans-Co(dtcd) $(N_3)H_2O^{2+} + Br^-$	$cis-Co(N_4)Cl_2^+ + H_2O \rightarrow$	$cis-Co(N_4)(Cl)H_2O^{2+} + Cl^{-}$	$N_4 = (en)_2$	$N_4 = tren$	$N_4 = \alpha$ -trien	$N_4 = \beta$ -trien		$c_{18}\text{-}Co(N_4)(NO_2)X^+ + H_2O \rightarrow c_{18}\text{-}Co(N_4)(NO_2)H_2O^{24} + X^-$	$N_{A} = (en)_{a}, X^{-} = C^{-}$		$N_4 = (bpy)_2, X^- = CI^-$	$N_4 = (bpy)_2, X^- = Br^-$	$N_d = (phen)_2, X^- = Br^-$	$Co(dmg)_2(CI)OC(NH_2)_2 + H_2O \rightarrow Co(dmg)_2(CI)OC(NH_2)_2 + H_2O$	$Co(dmg)_2(UC(NH_2)_2)H_2U^+ + CI^-$ $Co(CN)_X^3 + H_0^- \rightarrow Co(CN)_H_0^2 + X^-$	$\mathbf{X}^{-} = \mathbf{C}^{-1}$			$X^- = Br^-$	X ⁻ = I ⁻	X- = N	$Co(C_2O_4)_3^3 + H_2O \rightarrow$	$Co(C_2O_4)_2(H_2O)_2^- + C_2O_4^{2-}$	$cis-Co(en)_{s}(H_{s}O)OCO_{s}^{+}$	$\operatorname{Co}(en)_2\operatorname{CO}_3^+ + \operatorname{H}_3\operatorname{O}^+ \rightarrow \operatorname{I}_3^+$	cts-Co(en) ₂ (H ₂ U)UCU ₂ H ^{±+} ∞-Co(edda)CO ₂ ⁻ + H ₂ O →	α -Co(edda)(H ₃ O)OCO ³ -	α -Co(edda)CO ₃ ⁻ + H ₃ O ⁺ →	α -Co(edda)(H ₂ U)UCU ₂ H β -Co(edda)CO ₃ ⁻ + H ₃ O \rightarrow	β -Co(edda)(H_2 O)OCO ₂ -	β-Co(edda)CO₃ ⁻ + H₃O ⁺ → β-Co(edda)(H₂O)OCO₋H	$Co(nta)(Cos^2 + H_2) \rightarrow Cos^2 + Cos^2 + H_2) \rightarrow Co(nta)(Cos^2 + H_2) \rightarrow Co(nta)(H_2)(H_2)(h_2) \rightarrow Cos^2 + H_2) \rightarrow Cos^2 + H_2 \rightarrow Cos$	$Co(n(1)) = 1 + 130^{-2}$	$Co({\rm IM}_{3})_{\rm c} X^{(9-n)+} + OH^{-} \rightarrow Co({\rm NH}_{3})_{\rm c} OH^{2+} + X^{n-}$
ю	330	330	076	142	678	343	344			346				347	348	349	350	351		352	353	354	355	356	357		358	359	360	361	362	363		9.6K		366	267	200	368	369		370	371	372	

$\mu = 0.016 \text{ M} (\text{ClO}_{-}^{*})$ $\mu = 0.011 \text{ M} (\text{ClO}_{+}^{*})$ $\mu = 0.001 \text{ M} (\text{ClO}_{+}^{*})$ $\mu = 0.01 \text{ M} (\text{ClO}_{-}^{*})$ $\mu = 0.013 \text{ M} (\text{ClO}_{-}^{*})$ $carbonate buffer \mu = 0.013 \text{ M} (\text{ClO}_{-}^{*})\mu = 0.011 \text{ M} (\text{ClO}_{+}^{*})\mu = 0.011 \text{ M} (\text{ClO}_{+}^{*})\mu = 0.013 \text{ M} (\text{ClO}_{+}^{*})\mu = 0.013 \text{ M} (\text{ClO}_{-}^{*})\mu = 0.013 \text{ M} (\text{ClO}_{-}^{*})\mu = 0.013 \text{ M} (\text{ClO}_{-}^{*})$	pH = 9.4, buffer pH = 9.5, buffer pH = 9.9, buffer	0 ↑ 1	$[H^+] = 0.3 \text{ M},$ $\mu = 0.6 \text{ M},$ $[H^+] = 0.3 \text{ M},$ $\mu = 0.6 \text{ M},$	10 ⁻⁶ M NaPSS 10 ⁻⁶ M NaPSS 5 × 10 ⁻⁶ M NaPSS μ = 0.2 m (ClO ₄ ⁻) μ = 0.2 m (ClO ₄ ⁻)
195 197 197 197 197 197 197 197 197 197 197	199 199 199	34	139	182 182 182 200 200
$+21.2 \pm 0.3 (b)$ +7.4 \pm 1.0 (b) +9.9 \pm 0.2 (b) +11.1 \pm 0.2 (b) +11.1 \pm 0.2 (b) +13.2 \pm 0.4 (b) -3.9 \pm 0.4 (b)	+10.4 (b) +10.1 (b) +11.4 (b) +11.9 (b) +12.0 (b)	$\begin{array}{c} +25.5 \pm 0.1 \ (b) \\ +20.5 \pm 0.5 \ (b) \\ +19.5 \pm 0.1 \ (b) \\ +19.5 \pm 0.1 \ (b) \\ +19.9 \pm 0.1 \ (b) \\ +117.6 \pm 0.2 \ (b) \\ +117.6 \pm 0.2 \ (b) \\ +117.6 \pm 0.2 \ (b) \\ +117.6 \pm 0.3 \ (b) \\ +10.7 \pm 1.3 \ (b) \\ +90.6 \ (c) \\ +10.7 \pm 0.3 \ (b) \\ +2.4 \pm 0.3 \ (b) \end{array}$		
	+28.6 ± 1.4 +28.6 ± 1.3 +28.8 ± 1.4 +26.4 ± 1.5 +29.9 ± 1.2 +28.5 ± 1.2 +16.6 +22.3 +22.3 +11.9		++ ++	-5.3 ± 0.2 -2.3 +16 +30 ± 4 -20 ± 3
ちてててゅちゅゅゅゅゅゅうちちち	4 4 4		5 Q	4 4 4 4 6 ∼16 216
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.5 1.5 1.5		1.0	2.0 4.0 4.0 7 0 7 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0
***************************************	66 66	25	15 15	25 25 25 25 24.4
нала, 2000000000000000000000000000000000000	H ₂ 0 H ₂ 0 H ₂ 0	H20	H ₂ 0 H ₂ 0	H20 H20 H20 NH3 NH3
చర ర		$\begin{array}{c} \alpha^{-} Co(edda)(NV_0)(0H^{+} + NO_2^{-} \\ MA^{*} + OH^{} MA^{*+1} + H_2O \\ MA^{*} = Co(NH_3)_{6}H_2O^{*} \\ MA^{*} = Co(NH_3)_{6}C_2O_{4}H^{2,*} \\ MA^{*} = Co(NH_3)_{6}C_2O_{4}H^{2,*} \\ MA^{*} = co(O(DP)_3(NO_2)H_2O^{2,*} \\ MA^{*} = cis-Co(DP)_3(NO_2)H_2O^{2,*} \\ MA^{*} = cis-Co(DP)_3(NO_2)H_3O^{2,*} \\ MA^{*} = \alpha^{*}Co(edda)(H_3O)O^{*} \\ MA^{*} = \beta^{*}Co(edda)(H_3O)O^{*} \\ MA^{*} = \beta^{*}Co(edda)(H_3O)O^{*} \\ MA^{*} = \beta^{*}Co(edda)(H_3O)O^{*} \\ MA^{*} = \beta^{*}Co(edda)(H_3O)O^{*} \\ MA^{*} = Co(ta)(H_3O)O^{*} \\ MA^{*} = Co(ta)(H_3O)O^{*} \\ MA^{*} = Co(ta)(H_3O)O^{*} \\ MA^{*} = Co(ta)(H_3O)O^{*} \\ MA^{*} = Co(CN)_{6}^{*}H_3O^{*} \\ MA^{*} = Co(CN)_{6}^{*}H_3O^{*} \\ MA^{*} = Co(CN)_{6}^{*}H_3O^{*} \\ \end{array}$		5 $C_0(NH_3)_6Br^{3*} + H_2O \xrightarrow{M_6} C_0(NH_3)_6H_2O^{3*} + Br^{-}$ 6 7 8 9 $C_0(NH_3)_6(1^{2*} + NH_3 \rightarrow C_0(NH_3)_{6^{3*}} + Cl^{-}$ 9 $C_0(NH_3)_6N_3^{2*} + NH_3 \rightarrow C_0(NH_3)_{6^{3*}} + N_3^{-}$
375 375 375 375 376 377 377 377 377 377 377 377 377 377	391 392 393 394 395 396 396 396 396 396 397 398 397 398 397 398	400 401 401 402 404 403 404 403 403 403 411 411 412 412 412 412 412 412 412 412	413 414	415 417 417 418 419 419 420

(Continued)	
TABLE I	

ref remarks	$pH = 9.4, \mu = 0.5 M$		$\mu = 0.1 \text{ M} (\text{NO}_{3}^{-})$	CIO," salt	BPh4 ⁻ salt		Ħ							1									143, 156 $\mu = 0.1 \text{ M} (\text{ClO}_4^-),$	я. 	143, 156 $\mu = 0.1 \text{ M} (\text{ClO}_{-})$	Ц	[M] ≫ [L] Cl0, ⁻ salt	CIO ₄ ⁻ salt	BPh ₄ - salt	CIO4 salt RPh aalt			$\mu = 0.1 \text{ M} (\text{ClO}_4^-)$ $\mu = 0.1 \text{ M} (\text{ClO}_2^-)$			Ħ	$\mu \rightarrow 0$ $\mu H \sim 73. \iota \sim 0$
2	172	001	61	201	201	201	143	143	671	241	143	202	145 144	144	F.	203 204		205	205 206	007	207	207	143,	143	143,	143	201	201	201		201	201	208 208	208 208	208		
$\Delta ar{V}, \ { m cm}^3 { m mol}^{-1} \ ({ m method})$			+3.7 ± 0.2 (a)										+44.1 (b)	+34 4 (h)	(0) 5-50	$+3.5 \pm 0.2$ (b) +10.1 ± 0.4 (a)		41 (a)	-30 (a) 6 (a)		-18 (a)	-19 (a)														$(q) 1.0 \pm 1.1 \pm 0.1 (b)$	$+17.8 \pm 0.6$ (a) $+14.9 \pm 0.4$ (a)
$\Delta eta^{*}, \ cm^{3} \ mol^{-1} \ kbar^{-1}$																																					
$\Delta V^*,$ cm ³ mol ⁻¹	$+13.7 \pm 0.7$	110 T 0 E	$+5.3 \pm 0.5$	$+8.3 \pm 0.5$	$+6.8 \pm 0.5$	$+10.1 \pm 0.8$	$+4.3 \pm 1.0$	$+7.5 \pm 1.4$	0 U T 2 V T	4	$+3.8 \pm 0.8$	$+8.0 \pm 0.3$	+8.0 ± 0.3										$+5.5 \pm 0.3$	$+5.1 \pm 0.4$	$+6.7 \pm 0.2$	$+4.5 \pm 0.6$	+8.2 ± 2.1	+	+ +	$+11.5 \pm 1.5$	+++	-++	$+7.4 \pm 1.3$ +03 + 03	+ ++	$+12.8 \pm 0.6$	H -	$+13.5 \pm 0.6$
no. of data	10	ц	o co	9	9	9	5	5	v	0	5	6	6			5		7	2				5	5	5	5	5	9	цо (מס	ວເດ	ъ,	6 6	, 	6	.	ی د
P, kbar	1.0	06	2.0	2.0	2.0	2.0	1.0	1.0	01	0.1	1.0	2.0	2.0			1.4		3.0	3.0 3.0	0.0	3.0	3.0	1.0	1.0	1.0	1.0	1.7	2.0	2.0	5 O	2.0	2.0	2.0	2.0	2.0	7.0	0.1
T, °C	25	95	25	50	50	50	25	25	36	04	25	25	25 25	95	707	25 25		25	20		17	18.5	25	25	25	25	25	50	50	35 95	38	50	25 25	32	25 25	88	10
solvent	H_2O	ОН	H,0	DMSO	DMSO	DMF	H_2O	H_2O	Ол	0211	H_2O	H_2O	DMF H ₂ 0	H,O	0211	H ₂ 0 H ₂ 0	I	H_2O	H ₂ 0	1120	0°H	H_2^{-0}	H_2O	H_2O	H_2O	H_2O	H ₂ O	DMSO	DMSO	DMF	DMF	DMF	H ₂ 0 DMF	CH ₃ CN	CH ₃ OH	C2H5UH	H ₂ O
reaction	$C_0(NH_3)_5SO_3^+ + SO_3^{2-} \rightarrow$	$trans-Co(NH_3)_4(SU_3)_7^2 + NH_3$ $Co^{2+} + mode \rightarrow Co(mode)^{2+}$	co bana colbana)				$Co(H_2O)_6^{24} + bpy \rightarrow C_2O_{22}O_{12}O$			$Co(terpv)(H_{0}O)_{3}^{2+} + H_{0}O$		Co ²⁺ + Hmtpp → Co(mtpp) ⁺ + H ⁺	$Co(H_2O)_{6}^{2+} + edta^{4-} \rightarrow Co(edta)^{2-} +$	6H20 Co(H20),2+ + Hedta ³⁺ →	Co(Hedta)(H_O) ⁻ + 5H_O	$Co(edta)^{2-} + H^{+} \rightarrow Co(edtaH)^{-}$ $Co(terpy)_{2}^{2+}(low spin) \approx$	$\operatorname{Co}(\operatorname{terpy})_{2}^{2^{+}}(\operatorname{high spin})$ $\operatorname{Co}(\operatorname{terp} \mathbf{Y}_{2} + 9\operatorname{cov} \to \operatorname{Co}(\operatorname{cov}) \mathbf{Y}$	$\mathbf{X} = \mathbf{CI}$	X = Br X = I	$Co(3-Mepy)_2X_2 + 2(3-Mepy) \approx Co(3-Mepy)_2X_2$	Co(3-Mepy)₄A₂ X = Cl	$\mathbf{X} = \mathbf{Br}$ Ni ²⁺ + 1. ⁿ⁻ \rightarrow NiI. (2-n)•	$L^{n-} = bpy$		$L^{n-} = terpy$		$L^{n-} = pada$:	L^{n-} = isoquinoline				$L^{-} = malate$ $L^{n-} = maleate$
no.	421	667	423	424	425	426	427	428	061	224	430	431	432 433	434	5	435 436		437	439 439	204	440	441	442	443	444	445	446	447	448	449 450	451	452	453 454	455	456 457	101	400 459

$\begin{array}{l} \mu \sim 0 \\ pH \sim 6, \mu \sim 0 \\ pH \sim 6, \mu \sim 0 \\ pH \sim 6.8, \mu \sim 0 \\ \mu \rightarrow 0 \\ \mu \equiv 0.15 \\ \mu \equiv 0.15 \\ \mu = 0.1 \\ M (Gl0_4) \\ \mu = 0.1 \\ \mu \rightarrow 0 \end{array}$	$\mu = 0.1 \text{ M (ClO_{4}^{-})}$ calculated $pH \sim 6, \mu \sim 0$ $pH \sim 6.8 \mu \sim 0$	$\mu = 0.25 \text{ M } (\text{CIO}_{4}^{-})$ $\mu = 4.2 \text{ M } (\text{CIO}_{4}^{-})$ $\mu = 4.2 \text{ M } (\text{CIO}_{4}^{-})$ $\mu = 0.05 \text{ M } (\text{CIO}_{4}^{-})$ $\mu = 0.1 \text{ M } (\text{CIO}_{4}^{-})$	$\mu \to 0$ $\mu \to 0$ $\mu \to 0$ $\mu \to 0$ $\mu = 0.5-1.0 \text{ M (CIO_4^-)}$ $\mu = 0.5-1.0 \text{ M (CIO_4^-)}$ $\mu = 0.5-1.0 \text{ M (CIO_4^-)}$ $\mu = 0.57 \text{ m (CIO_4^-)}$ $\mu = 1.05 \text{ m (NO_3^-)}$ $[H^+] = 0.98 \text{ M},$ $\mu = 1 \text{ M}$
62 211 211 211 212 212 212 212 212 212 2	208 208 208 209 209 211 210 210 211 213 213 213 213 213	107 107 107 107 107 215 215 215 215 216 216 216 216 216 216 216 216 216 216	144 203 203 203 144 145 218 218 218 220 221 221
+17.3 ± 1.0 (a) +17.6 ± 0.9 (a) +11.1 ± 0.9 (a) +17.8 ± 0.5 (a) +44.4 (b) +33.7 (b)	+3.3 ± 0.3 (b)	$\begin{array}{c} -3.1 \pm 0.3 \ (h) \\ -2.5 \pm 0.1 \ (h) \\ -2.1 \pm 0.1 \ (h) \\ -2.1 \pm 0.1 \ (h) \\ -3.5 \pm 0.1 \ (a) \\ -3.5 \pm 0.1 \ (a) \\ -1.2 \pm 0.1 \ (a) \\ -1.2 \pm 0.1 \ (a) \\ -1.2 \pm 0.1 \ (a) \\ -10.0 \pm 0.2 \ (a) \\ -3.0 \pm 0.2 \ (a) \\ -3.0 \pm 0.2 \ (a) \\ -3.4 \pm 0.1 \ (a) \\ -1.4 \pm 0.1 \ (a) \\ +45.8 \ (h) \end{array}$	+36.5 (b) +4.8 ± 0.2 (b) +8 ± 1 +44.4 (b) +33.6 (b)
$\begin{array}{c} +16.0 \pm 2.1 \\ +14.7 \pm 0.5 \\ +13.5 \pm 0.4 \\ +14.1 \pm 0.8 \\ +13.7 \pm 1.2 \\ +9.0 \pm 0.9 \\ +8.8 \pm 0.5 \\ +12.4 \pm 0.2 \end{array}$	$\begin{array}{c} +8.9 \pm 0.8 \\ +12.2 \pm 0.3 \\ +9.9 \pm 0.5 \\ +15.7 \pm 1.1 \\ -4.0 \pm 0.5 \\ -1.4 \pm 0.4 \\ -2.6 \pm 0.7 \\ -4.1 \pm 0.6 \\ +3.0 \pm 0.9 \\ -4.1 \pm 0.7 \\ -4.1 \pm 0.7 \\ -4.1 \pm 0.7 \\ +15.5 \pm 2.4 \\ +15.5 \pm 2.6 \\ +35.4 \pm 5.5 \end{array}$		+7.0 ± 0.6 +4.0 ± 1.3 +5.1 ± 0.7 +10.6 ± 0.6 -0.2 ± 0.3
6 6 110 15	99999999999999999999999999999999999999	v∞ voov4v	∞ -1-1 QQQ
1.0 1.0 1.0 2.0 2.0 2.0	220 220 220 220 220 220 0.5 0.5 0.5	3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55	22.0 11.2 11.8 11.4
888998889888	8 8 8 8 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8	57 65 45 20 20 10-35 -3 to +87 -3 to +87 20 20 22 20 25	12 25 25 25 25 25 13 25 25 25 25 25 25
Н20 11 20 12 00 12 10 12 10 12 10 12 10 12 10 12 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	H ₂ 0 DMF CH ₃ 0H H ₂ 0 H ₂ 0 H ₂ 0 H ₃ 0 H ₃ 0 CH ₃ C00H CH ₃ C00H	нн 100000000000000000000000000000000000	H ₂ O H ₂ O
$L^{n} = malonate$ $L^{n} = glycolate$ $L^{n} = lactate$ $L^{n} = succinate$ $L^{n} = tartrate$ $L^{n} = mtpp$ $L^{n} = mtpp$ $L^{n} = ettaf$ $L^{n} = ettaf$ $L^{n} = Hedta^{3-}$	NiL ^{2-n,t} \rightarrow Ni ²⁺ + L ⁿ⁻ L ⁿ⁻ = isoquinoline L ⁿ⁻ = malate L ⁿ⁻ = malate L ⁿ⁻ = latcate L ⁿ⁻ = latcate L ⁿ⁻ = tartrate L ⁿ⁻ = tartrate L ⁿ⁻ = edta ⁺⁻ NiL ₂ + pan \rightarrow Ni(pan)L ⁺ + L ⁻ L ⁻ = CH ₃ COO ⁻	Ni(L) ²⁺ + 2H ₂ O \rightleftharpoons Ni(L)(H ₂ O) ₂ ²⁺ L = 2,3,2-tet L = cyclam L = M ₄ cyclam L = M ₄ C L = N ₄ B L = N ₄ B L = N ₄ B L = DTHP Cu(H ₂ O) ₆ ²⁺ + edta ⁴⁻ \rightarrow Cu(edta) ²⁻ +	$\begin{array}{l} 6H_{9}(0)\\ Cu(H_{2}(0)_{*}^{2}+Hedta^{3}-\gamma\\ Cu(Hedta)_{*}+H^{*}\rightarrow Cu(Hedta)^{-}\\ Cu(Hedta)^{*}+H^{*}\rightarrow Cu(Hedta)^{-}\\ Cu(Hedta)^{*}+H^{*}\rightarrow Cu(Hedta)^{-}\\ Cu(Hedta)^{*}+Hedta^{*}\rightarrow Cu(H_{2}edta)^{-}\\ Cu(H_{2}(0)_{*}^{2}+edta^{*}\rightarrow Cu(H_{2}edta)^{-}\\ Cu(H_{2}(0)_{*}^{2}+Hedta^{*}\rightarrow Cu(H_{2}edta)^{-}\\ Cu(Hedta)(H_{1}^{2}(0)^{*}+Hedta^{*}\rightarrow Cu(H_{2}edta)^{-}\\ Cu(Hedta)(H_{1}^{2}(0)^{*}+Hedta^{*}\rightarrow Cu(H_{2}edta)^{-}\\ Cu(Hedta)(H_{1}^{2}(0)^{*}+Hedta^{*}\rightarrow Cu(H_{2}edta)^{-}\\ Cu(Hedta)(H_{1}^{2}(0)^{*}+Hedta^{*}\rightarrow Cu(H_{2}edta)^{*}+H^{+}\\ Ca(TROP)^{2}+HHOtP_{2}O\\ Ca^{*}+Hipt \rightarrow Ca(TROP)^{2}+H_{2}O\\ Ca^{*}+Hipt \rightarrow Ca(ipt)^{2}+H^{*}\\ MoO((H_{2}O)_{6}(tmpyp))_{*}^{2}O^{*}+H_{2}O\\ Mo(H_{2}O)_{6}(SCN^{2}+H_{2}O) \end{array}$
460 461 463 465 468 468 469	471 471 472 474 475 475 475 475 475 476 477 477 477 477 478 481 483 483	485 486 487 488 488 488 498 494 492 495 495 495	497 498 499 501 503 504 505 505 505 506 507

(Continued)	
-	
TABLE	

remarks											$\mu = 1.05 \ m \ (NO_3^{-})$			= 011 M		$\mu \sim 0.01 \text{ M}$				μ = 2 M (ClO₄ ⁻)	4 M HClO4	3.8 M HCIO4, 0.2 M HCI 1H ⁺¹ = 0.1 M	$\mu = 1 \text{ M}$	[H ⁺] = 0.1 M, " = 1 M		4 M HCIO4	1 M HCIO4 4 M HCIO4	I M HCIO4	$\mu = 1.0 \text{ M (OH^-)}$	1.0 M	$\mu = 1.0 \text{ M} (\text{CIO}_{4})$ $\mu = 0.1 \text{ M} (\text{OH}^{-})$ $\mu = 1.0 \text{ M} (\text{OH}^{-})$
ref	222		222 999	222	223	167, 224	167, 224	223	223	527 777		225	225			526	226 227	227	227	130		877 877		177	229	-	228		229		*
$\Delta \tilde{V},$ cm ³ mol ⁻¹ (method)																-9 ± 1 (25 °C) (b)	-10 ± 3 (60 °C) (b)			+18.3 (a)											
$\Delta eta^*, \ \mathrm{cm}^3 \mathrm{\ mol}^{-1} \ \mathrm{kbar}^{-1}$																															
$\Delta V^*,$ cm ³ mol ⁻¹	$+0.5 \pm 0.5$		$+0.9 \pm 0.5$ -0.3 ± 0.7	$+0.1 \pm 0.5$	$+0.7 \pm 0.8$	6	+4	$+3.6 \pm 0.8$	$+3.9 \pm 0.8$	$+4.1 \pm 0.5$	-#	$+6.1 \pm 0.4$	$+5.5 \pm 0.1$	$+5.4 \pm 0.2$ -20 ± 1.4		-30.2 ± 2.4	+21.2 ± 1.4	+16 ± 2	+24.5 ± 2	+3.0 ± 0.7	$+15.7 \pm 6.5$	714.4 ± 1.0 +88 + 0.4		$+11.1 \pm 0.5$	-6.9 ± 0.4	$+21.5 \pm 0.6$	$+24.5 \pm 0.3$ +14.3 ± 0.5	-7.9 ± 0.6	$+18.7 \pm 0.7$	$+19.9 \pm 0.2$	$+20.2 \pm 0.0$ +20.3 ± 0.9 +90.4 ± 0.5
no. of data	4		നെ	າຕ	4	നെ	n	4	4 u	о <i>к</i> о	7	4	4	49		81	ۍ ۲	4	5	æ	+ - 			4	7		+ + 9 C-	7			
P, 1 kbar	1.5		1.0	1.0	1.5	1.4	1.4	1.5	1.5	2.0	1.8	1.5	1.5	1.5		6-7	1.0	0.8	1.0	1.8	1.5 1 E	0 1	2	1.4	1.5	1.5	1.5 1.5	1.5	1.5		
T, °C	50		40 20	6 6	50	25 25	07	17	17	15	25	15	20	22 60	8	na	25	25	25	60	20 50	15		22	40	20	20 Z	60	40		
solvent	PhCH ₃		PhCH ₃ PhCH ₂	PhCH,	PhCH ₃	DMSO	ungun	PhCH ₃	PhCH ₃	(CH ₂ CI) ₂ (CH ₂ CI) ₂	H ₂ 0	H_2O		0°H		П20	THF	10% CH ₃ OH/ THF	10%CH ₃ OH/ THF	H_2O	H_2O	H ₂ O	0.7	H_2O	H_2O	H_2O	H_2^{0}	H ₂ 0	H_2O		
reaction	Mo(CO) _s py + phen \rightarrow Mo(CO) _s phen + CO + py	Mo(CU) ₆ (4-Mepy) + L → Mo(CO) ₄ L + 4-Mepy + CO	L = bpy	$\mathbf{L} = \mathbf{phen}$	L = dab	Mo(CO)₄bpy + CN ⁻ → products	$cis-Mo(CO)_4(py)_3 + L \rightarrow Mo(CO)_4L + 2py$		L = bpy	L = phen	$M_{0}O(O_{2}^{\circ})(tmpyp)^{3+} + H^{+} + H_{2}O \rightarrow M_{2}O(tmmyp)U O_{2}^{+} + U O_{2}$	$Mo_0(H_0)_{9}^{4+} + SCN^- \rightarrow Mo_0(H_0)_{9}^{4+} + SCN^- \rightarrow Mo_0(H_0)_{8}^{1+} + SCN^- \rightarrow Mo_0(H_0)_{8}^{1+} + H_0^{1+}$		Ru(NH ₃),H ₃ O ³⁺ + Cl ⁻ →	$\begin{array}{c} Ru(NH_3)_6 Cl^{24} + H_2 O \\ PL_NNH & OPE + H_2 O \\ \end{array}$	$Ru(NH_3)_6U^{-1} + H_2^{-1}$	HRu ₈ (CO) ₁₁ - + PPh ₃ → HRu ₆ (CO)1, - PPh ₃ →	$\begin{array}{l} Ru_{s}(CO)_{V}(CO)_{SCH}^{-1}+P(OCH_{3})_{s}\rightarrow\\ Ru_{s}(CO)_{s}(P(OCH_{3})_{s})(CO,CH_{2})_{s}+CO\\ \end{array}$	$Ru_3(CO)_{0,0}(P(OCH_3)_3)CO_2CH_3^{-1} + P(OCH_3)_3)CO_2CH_3^{-1} + P(OCH_3)_3 \rightarrow Ru_3(CO)_{10}(P(OCH_3)_3)_2 + P(OCH_3)_2 + P(OCH_3)_3)_2 + P(OCH_3)_3 + P(OCH$	$\begin{array}{l} \operatorname{Rh}(\operatorname{H}_{3})_{6}\operatorname{H}_{2}\operatorname{O}^{3+} + \operatorname{CI}^{-} \rightarrow \\ \operatorname{Rh}(\operatorname{H}_{1})_{6}\operatorname{H}_{2}\operatorname{CI}^{2+} + \operatorname{H}_{-}\operatorname{O} \end{array}$	RhClupture 12^{-1} $12^$	$\frac{c_{2}}{Rh(toos)(H_{2}O^{2} + H_{2}O$	ୁ ଅ	$\operatorname{Kh}(\operatorname{tpps})(\operatorname{H}_{2}^{\circ}\operatorname{U})_{2}^{\circ}^{\circ} + \operatorname{SC}(\operatorname{NH}_{2})_{2} \rightarrow$ $\operatorname{Rh}(\operatorname{tpps})(\operatorname{H}_{2}\operatorname{O})\operatorname{SC}(\operatorname{NH}_{2})_{3}^{\circ}^{\circ} + \operatorname{H}_{3}\operatorname{O}$	$Rh(NH_3)_5NO_3^{2k} + H_2O \rightarrow Rh(NH_3)_LH_0^{2k} + NO_2^{-k}$	$\operatorname{RhCl}_{9}^{*} + \operatorname{H}_{2}^{0} \to \operatorname{RhCl}_{6}^{0} + \operatorname{Cl}^{-} + \operatorname{Cl}^{-}$	$\operatorname{RhCl}_{5}\operatorname{H}_{2}O^{2-} + \operatorname{H}_{2}O \rightarrow \operatorname{RhCl}_{4}(\operatorname{H}_{2}O)_{2^{-}} + \operatorname{Cl}_{2^{-}}$	$\operatorname{Kh}(\operatorname{C}_2\operatorname{O}_4)_3^{*-} + \operatorname{H}_2\operatorname{O} \to \operatorname{Rh}(\operatorname{C}_2\operatorname{O}_2)_2(\operatorname{H}_2\operatorname{O}_2)_2^{*-} + \operatorname{C}_2\operatorname{O}_4^{*-}$	$Kh(NH_3)_5 X^{27} + UH^{-1} + Kh(NH_3)_5 UH^{27} + X^{-1}$ $X^{-} = CI^{-1}$	X- = Br-	$X^{-} = \Gamma$
по.	508		509 510	511	512	513		515	516	518	519	520	521	522 523			525 526	527	528	529	530 531	532	200	533	534	535	537	538	539	540	542 543

544 545	$X^- = NO_3^-$ trans-Rh(en) ₆ (H ₃ O) ₅ ³⁺ + OH ⁻ \rightarrow	0°H	25		2	$+22.3 \pm 0.9$	$+26.7 \pm 0.5$ (b)	34	$\mu = 1.0 \text{ M } (\text{CIO}_4)$ $\mu \to 0$
	$trans-Rh(en)_2(H_2O)OH^{2+} + H_2O$	C II	à						
546	trans- $\operatorname{Kh}(\operatorname{en})_2(\operatorname{H}_2^{U})\operatorname{OH}^{2*} + \operatorname{OH}^- \rightarrow trans-\operatorname{Kh}(\operatorname{en})_2(\operatorname{OH})_2^+ + \operatorname{H}_2^{O}$	Н20	25				$+18.4 \pm 1.0 (b)$	34	n ↓ 1
547	$Rh(NH_3)_6Cl^{3+} + H_2O \frac{H_8^{2+}}{10^{-10}}$ $Rh(NH_3)_6H_2O^{3+} + Cl^{-10}$	0 ² H	15	1.5	2	-1.0 ± 0.4		139	$[H^+] = 0.3 M,$ $\mu = 0.6 M$
548	$Rh(NH_3)_6I^{2+} + H_2O \xrightarrow{Hg^{2+}} Rh(NH_3)_6H_2O^{3+} + I^-$	H_2O	12	1.5	7	$+1.2 \pm 0.3$		230	$\mu = 0.3 \text{ M} (\text{ClO}_4^-)$
549	$mer-\text{RhCl}_3(\text{H}_2\text{O})_3 + \text{H}_2\text{O} \xrightarrow{\text{H}_8^{2+}} \text{RhCl}_3(\text{H}_2\text{O})_3 + \text{Cl}_2$	H_2O	23	1.5	7	+8.1 ± 0.4		231	$\mu = 2 \text{ M (HClO_4)}$
550	$Pd(H_{20})_{x}^{(1)}$ $Pd(H_{20})_{x}^{(1)}$ $Pd(H_{20})_{x}^{(1)}$ $Pd(H_{20})_{x}^{(1)}$ $Pd(H_{20})_{x}$ $Pd(H_{20})_{x}$	H_2O	25	1.7	æ	-10.4 ± 0.5		53	
551	Lu(Lizo)3Dimoo Lizo Dd(dian)H_O ²⁺ + I. → Dd(dian)L ²⁺ + H_O	H2O H2O	25 19	1.7	20 12	-9.2 ± 0.6	-7.5 ± 0.3 (a)	232 933	1 M HClO4 = 01 M (ClO)
552		0211	77	2	5	-2.0 ± 0.4		007	(toro) w to - d
553 554	L = cytidine L = thymidine					$+1.5 \pm 0.7$ -0.6 ± 2.2			
555	L = uridine					+			
556	$Pd(L)H_2U^{a_1} + X^- \rightarrow Pd(L)X^+ + H_2U^{a_2}$ $I_1 = 1 + 7 + 7$	0 ⁻ H	95	1 0	ŭ	-7.9 ± 0.9		120	" = 0.1 M (CIO)
557	$L = 1.1.7.7$ -Me,dien. $X^{-} = Br^{-}$	H ₀ O	32	1.0	o vo			234	0.1 M
558	$L = 1,1,7$ -Me ₄ dien, $X^{-} = I^{-}$	H20	52 F	1.0	o vo	I +H		234	= 0.1 M
559	$\mathbf{L} = 1,1,4$ - $\mathbf{E}t_{g}dien, \mathbf{X}^{-} = \mathbf{C}^{T}$	H_2O	25	1.0	5	+		51	= 0.1 M
560	$L = 1, 1, 4, 7, 7$ -Me ₆ dien, $X^{-} = CI^{-}$	H ₂ 0	25	1.0	ъ.	-H -		234	= 0.1 M
190 7 5 5 1	$L = 1,1,4,7,7-Me_{B}dien, X^{-} = Br^{-}$	H2O	52 52	1.0	ι Ω μ	-7.3 ± 0.4		234	0.1 M
700 299	L = 1,1,4,1,1-INTEGUEU, $A = 1I = 1,1,4,7-Me.dien Y^{-} = N_{c}^{-}$	H ₂ O	9 K	0.1	o v	н +		407 134	
564	$L = 1.1.7.7$ -Et.dien. $X^{-1.3}$	H ₀ O	32	1.0	о ro	4 - 44		51	= 0.1 M
565	$L = 4-Me-1, 1, 7, 7-Et_4dien, X^- = CI^-$	H ₂ 0	25	1.0	5	-7.7 ± 0.5		49	= 0.1
566	Pd(H ₂ O) ₃ DMSO ²⁺ + H ₂ O → Pd(H ₂ O), ²⁺ + DMSO	H ₂ 0	25	1.7	œ	-0.9 ± 0.2		53	
567		H_2O	25	1.7	æ	-1.7 ± 0.6		232	1 M HCIO,
001	$Pd(dien)L^{zr} + H_2O \rightarrow Pd(dien)H_2O^{zr} + L$	H_2O	12	1.0	с С	-		233	$\mu = 0.1 \text{ M } (\text{CIO}_4^-)$
200 200	L = unymuane L = uridine					-0.8 ± 1.1 -6.3 ± 4.6			
	$Pd(L)X^{(2-n)+} + H_2O \rightarrow Pd(L)H_2O^{2+} + X^{n-}$					1			
570		H_2O	25	1.0	5	-12.2 ± 0.8		234	$\mu = 0.1 \text{ M} (\text{ClO}_4^-)$
572	$L = dien, X^{n-} = CO_3^{2-}$	0°H	25	1.0	ç	н н		235	$\mu = 1.0 \text{ M (ClO_1^-)}$
573	$\mathbf{L} = 1, 4, 7$ -Me ₃ dien, $\mathbf{X}^{n-} = \mathbf{CI}^-$	$H_2^{-}O$	25	1.0	5	-++ -		236	
575	$L = 1.4.7$ -Etadien, $X^{n-} = Cl^{-1}$	0°H	25	1.0	5	-9.2 ± 0.0 -10.8 ± 0.7		234	$\mu = 0.1 \text{ M (ClO_1^-)}$
576		1				-10.8 ± 1.0			
577 978	$L = 1, 1, 7, 7$ -Me ₄ dien, $X^{n-} = C^{1-}$	H_2O	25	1.0	2	-15.5 ± 0.6 -13.4 ± 1.9		236	$\mu = 0.1 \text{ M} (\text{ClO}_4^{-})$
579		H_2O	25	1.0	5	-8.6 ± 0.4		235	$\mu = 1.0 \text{ M} (\text{ClO}_4)$
580	$\mathbf{L} = 1, 1, 4 \cdot \mathbf{E} \mathbf{t}_{3} \mathbf{dien}, \mathbf{X}^{n-} = \mathbf{C} \mathbf{l}^{-}$	H_2O	25	1.0	5	-14.2 ± 0.6		234	u
581 582	$L = 1, 1, 4, 7, 7$ -Me ₆ dien, $X^{n-} = Cl^{-}$	H_2O	25	1.0	5	-14.5 ± 1.2 -11.6 ± 0.5		236	$\mu = 0.1 \text{ M} (\text{ClO}_4)$
583		:			:	-10.9 ± 0.3			
585 78 78	$L = 1, 1, 7, 7$ -Et ₄ dien, $X^{n-} = Cl^{-}$	H ₂ 0 H 0	25 25	1.0 7	ю г	-13.0 ± 0.6		234	$\mu = 0.1 \text{ M} (\text{ClO}_{4})$ $\mu = 0.05 \text{ M} (\text{ClO}_{2})$
286		0°H	22	1.5	• [~	-15.4 ± 0.3		237	11
587		H20	25	1.0	. 9	-16 ± 1		237	- 11
588		$H_{2}O$	25	1.5	7	Ţ		237	$\mu = 0.5 \text{ M (ClO_4^{-})}$
289	$\mathbf{L} = 1,1,7,\mathbf{F}\mathbf{E}\mathbf{t}_4$ dien, $\mathbf{X}^{n-} = \mathbf{B}\mathbf{r}^-$	H_2O	25	1.5	7	-12.5 ± 0.2		237	$\mu = 0.05 \text{ M} (\text{ClO}_4^{-})$
591	$L = 1.1.7.7 \cdot Et.dien. X^{n-} = N_{o}^{-1}$	0°H	25	1.5	7	H +H		237	
592	$L = 1.1.7.7$ Et.dien. $X^{n-} = I^{-1}$	0°H	25	1.5	- 2	2 +		237	= 0.05 M
		- 7							

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	reaction	solvent	T, °C	$P_{,}$ kbar	no. of data	$\Delta V^*, \ \mathrm{cm}^3 \mathrm{mol}^{-1}$	cm ³ mol ⁻¹ kbar ⁻¹	cm ³ mol ⁻¹ (method)	ref	remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11						-11.8 ± 0.2			237	H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			H_2O	40	1.5	7	-10.3 ± 0.2			237	l
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			H_2O	30	1.5	5	-10.6 ± 0.4			238	tl
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$1, 1, 7, 1$ -Et, dien, $\mathbf{X}^{m} = \mathbf{N}\mathbf{H}_{3}$	H ₂ 0	40	1.5	7	-#			237	= 0.2 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathbf{U}_{1}, \mathbf{U}_{1}, \mathbf{U}_{2}$ = \mathbf{U}_{1}	H ₂ O	25	1.5	7	#			235	H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	II T	$\text{P-Me-1,1,7,7-Et_{dien}, X''' = C''$	H_2O	25	1.7	7	#			239	= 0.1 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			H_2O	30	1.2	7	-#			234	H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			H,0	30	1.5	7	-#			930	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			H_O	40	01	ц	4			000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				00			4 -			202	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				00	0. L	- t	H-			234	II -
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1120	00 22	1.3	- 1	H			239	= 0.1 M
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	1 I 7 -	$\mathbf{F}_{\mathbf{A}} = \mathbf{F}_{\mathbf{A}} + $	H2O	27	1.5	L	H-			239	= 0.1 M
$ \begin{array}{c} \begin{array}{c} \mbox{W} X = N \\ \mbox{W} X$	і Ц	$H-Me-1,1,1,1,HET_{dien}, X'' = SCN^{-1}$	H_2O	30	1.5	5	#			238	= 0.5 M
$ \begin{array}{c} \mathbf{W}_{\mathbf{v}}^{\mathbf{v}} = \mathbf{W}_{\mathbf{v}}^{\mathbf{v}} \mathbf{H}_{0}^{0} \mathbf$	1 	$\frac{1}{10000000000000000000000000000000000$	H_2O	50	1.5	4	+H			239	= 0.1 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L I	1-Me-1,1,7,7-Et₄dien, X ^{n−} = NH ₃	H ₂ 0	50	1.5	9	+			239	= 01 M
$ \begin{array}{c} \mathcal{C}^{*} = (\Gamma - H_{0}) & \mathcal{C}^{*} = (\Gamma$	L = ,	$1^{-}Me-1,1,7,7-Et_{a}dien, X^{n-} = C_{0}O_{a}^{2-}$	H.0	14	1.5	ų	+			000	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L L	$1.1.4.7.7$ -Et, dien. $X^{n-} = C^{1-}$	H,O	25	5) r	14			507	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				20	- - -	- נ	Η -			234	H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ļ			50	0 F	- c	H-			662	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DALER.	: 1		2	7.7	0 1	H-			234	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		teu/r solvent	CLI3UN	40	0-1	1.	⊖` #			240	= 0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		reduced the result of the resu									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			C ₂ H ₅ OH	40	1.5	7	÷H			240	= 0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			DMSO	40	1.5	7	Ħ			240	= 0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			DMF	40	1.5	7	÷			076	= 0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			CH _a CN	40	5	. ۲	1 +				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pd(L)C	+ + Y- → Pd(I.)Y+ + CI-			0.1	-	н			240	c0.0 =
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\lim_{n \to \infty} V^{-} = I^{-}$	Л	96	с. -	ì					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		147 Mo diam V ⁻ - OU-		20	1.0 1	، ت	H ·			234	= 0.1 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 -			Q7	1.0	ę	H			236	= 0.1 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 	1,4,1-IMIeguleII, I = I	D ² H	97	1.0	5	÷.			236	= 0.1 M
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ן קייי	$1, 4, 7$ -Et $_3$ dien, $Y = I$	H ₂ O	25	1.0	r.	÷H-			234	= 0.1 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$]	$1,1,4$ -Et ₃ dien, $Y^{-} = I^{-}$	H_2O	25	1.0	ß	+H			234	= 0.1 M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	.,1,7,7-Me ₄ dien, Y ⁻ = OH ⁻	H,0	25	1.0	5 S	+H			936	= 01 M
$= N_{3}^{-} + \frac{H_{2}^{0}}{H_{2}^{0}} \frac{25}{25} \frac{15}{15} \frac{7}{7} \frac{-155 \pm 0.8}{-10.1 \pm 0.1} \\ = \frac{N_{3}^{-}}{H_{2}^{0}} \frac{H_{2}^{0}}{25} \frac{25}{15} \frac{15}{15} \frac{7}{7} \frac{-155 \pm 0.8}{-26 \pm 0.5} \\ \rightarrow H_{2}^{-} + H_{2}^{-} + \frac{H_{2}^{0}}{H_{2}^{0}} \frac{25}{25} \frac{10}{10} \frac{5}{5} \frac{-10.1 \pm 0.1}{-26 \pm 0.5} \\ \rightarrow H_{2}^{-} + H_{2}^{-} + \frac{10}{7} \frac{2}{5} \frac{8}{-5.5 \pm 1.0} \frac{+2.0 \pm 0.8}{-2.4 \pm 0.5} \frac{241}{24} \frac{145}{14} \\ \rightarrow H_{2}^{-} + H_{2}^{-} + \frac{10.6 \pm 0.5}{-6.9 \pm 1.2} \frac{145}{-6.9 \pm 1.2} \frac{242}{243} \frac{1}{12} \\ - H_{1}^{+} - \frac{DMr}{25} \frac{2}{20} \frac{9}{5} +0.1 \pm 0.6 \frac{127}{-6.9 \pm 1.2} \frac{145}{243} \frac{127}{-243} \frac{1}{24} \\ - H_{1}^{-} - \frac{10.6 \pm 0.5}{-6.9 \pm 1.2} \frac{10.6 \pm 0.1 \pm 0.6}{-0.1 \pm 0.6} \frac{127}{-243} \frac{1}{24} \frac{1}{24} \\ - H_{1}^{-} - \frac{10.0 \pm 0.3}{-9.3 \pm 0.3} \frac{1}{24} \frac{1}{27} \frac{1}{24} \frac{1}{24} \\ - H_{2}^{-} - \frac{2}{25} \frac{1}{2} \frac{1}{2} -\frac{10.0 \pm 0.3}{-9.3 \pm 0.3} \frac{1}{24} \frac{1}{27} \frac{1}{24} \\ - H_{2}^{-} - \frac{1}{25} \frac{1}{2} -\frac{9.8 \pm 0.3}{-9.3 \pm 0.1} \frac{2}{245} \frac{1}{24} \frac{1}{2$	L =	.,1,7,-Et _s dien, Y ⁻ = OH ⁻	H_O	25	10	ц,	+			100	M 10 -
$= SCN^{+} H_{2}^{-} O = \frac{1}{5} - $	L =)	1.7.7-Et.dien, Y ⁻ = N ⁻	H.O	25	2		1 1			100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[= ,]	1.77-Ft. dien V ⁻ = SCN ⁻	O'H	26	 	- r	1 -			100	W 0.0 =
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DACE+ A	(1,1,1) - $(1,1,1)$ - $(1,1,1)$	1120	07	0.1 ,	- 0	Η·			237	= 0.5 M
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			H ₂ U	Q 7	1.0	9	H			237	= 0.5 M
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A)DY	t _i dien)SCN ⁺ + Br ⁻									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pd(Et	ien)SO ₃ + HSO ₃ ⁻ \rightarrow	H_2O	25	1.0	5	0~			241	$M_{100} = 1^{+}H_{1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pd(S)	$(0_3)_2^{2-}$ + Et ₄ dien									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd(H ₂ O) ₆ ²⁺ + bpy →	H,0	0	2.0	5	H		+20+08(a)	649	I I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cq(P)	$(H_{0}O)_{2}^{2+} + H_{0}O$	•			,	ł			1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd^{2+} +	+(uc	DMF	95	06	a	- +			111	1 F C N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cd(hnv)	i t	H O	9 c	0 C	0 1	н ~			140	CL.U ≤
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(1)^{2+}$ + hour	1120	>	2.0	o	H			242	
DMF 1.2 6 -0.1 ± 0.6 127 μ DMF 16 2.0 9 $+0.3 \pm 0.3$ 127 μ DMF 16 2.0 9 $+0.3 \pm 0.3$ 127 μ PhCH ₃ 25 1.0 5 $+10.6 \pm 0.5$ 244 P Y H ₂ O 25 0.7 2 $+8$ 244 P T -10.6 ± 0.5 -0.3 ± 0.3 244 P 244 P X' H ₂ O 25 1.5 7 -10.0 ± 0.3 245 μ I.5 7 -9.8 ± 0.3 0.1 μ μ μ μ		20.67 + 00		ļ							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 50	. H +(1dl)ur 👉 1drr	DMSO	35	1.2	9	÷H-			127	
H ₂ O 25 1.0 5 +10.6 ± 0.5 243 μ = PhCH ₃ 25 0.7 2 +8 244 I T H ₂ O 25 0.7 2 +8 244 I X ⁻ H ₂ O 25 1.0 2 +8 245 μ 245 μ X ⁻ H ₂ O 25 1.5 7 -10.0 ± 0.3 245 μ μ 1.5 7 -9.8 ± 0.3 0.1 μ μ μ μ			DMF	16	2.0	6	+H			127	
PhCH ₃ 25 0.7 2 +8 244 1 X ⁻ H ₂ O 25 1.5 7 -10.0 ± 0.3 245 $\mu = 1.5$ 1.5 7 -9.8 ± 0.3 1.5 $\mu = 1.5$ $\mu = 1.5$ $\mu = 1.5$	WO(H ₂	$((CN)_{x}^{2} + N_{3}^{2} \rightarrow N_{3}^{2}$	H_2O	25	1.0	5	÷H			243	
PhCH ₃ 25 0.7 2 +8 244 n X ⁻ H ₂ O 25 1.5 7 -10.0 ± 0.3 $^{\mu}$ 245 $^{\mu}$ 1.5 7 -9.8 ± 0.3 $^{\mu}$ $^{\mu}$ $^{\mu}$ $^{\mu}$ $^{\mu}$ $^{\mu}$	T)OM	$N_{3}(CN)_{4}^{3-} + H_{2}O$									
X ⁻ H ₂ O 25 245 1.5 7 -10.0 ± 0.3 $\mu < \mu <$	cis-W(C	0)₄(4-Mepy) ₂ + phen →	PhCH ₃	25	0.7	2	+8			244	
X ⁻ H ₂ O 25 245 1.5 7 -10.0 ± 0.3 $\mu = \mu = \mu = 1.5$ 7 -9.8 ± 0.3 1.8 9 -9.3 ± 0.1 $\mu = \mu = \mu = \mu = 1.8$	M(C										
1.5 7 -10.0 ± 0.3 μ 1.5 7 -9.8 ± 0.3 μ 1.8 9 -9.3 ± 0.1 μ	Pt(dien,		H_2O	25						245	
$7 -9.8 \pm 0.3 $	X- =	Br ⁻			1.5	7	-H				2
$9 -9.3 \pm 0.1$					1.5	7	-9.8 ± 0.3				11
					1.8	σ	-93 + 01				
					- -) C					1

TABLE I (Continued)

salt	CIO,	1 010										
$\mu \sim 0, \operatorname{CIO}_{4}^{-}$ salt $\mu = 0.2 \text{ M},$	$\mu \sim 0$ $\mu = 0.2 \text{ M NaCIO}_{\mu}$		10 ⁻³ M HNO ₃							0 ~ n		0.05 M HCI 0.05 M HCI
		246 246	246	247 247	248 248	247 247 248	247 248 248	247 248 248	888888	35 35 34	249 249	250 250 250 250 250 250 250 250 250
		+1.3 ± 0.1 (b)									$+35.5 \pm 0.4$ (b) $+22.1 \pm 0.4$ (b) $+32.2 \pm 0.5$ (b) $+33.2 \pm 0.7$ (b) -9.8 ± 1.1 (a) -23.8 ± 1.5 (a)	
-9.7 ± 0.1 -9.2 ± 0.2	-10.5 ± 0.3 -9.9 ± 0.3 0.2 ± 0.4	н н	-9.2 ± 1.0	-14.1 ± 0.5 -17.0 ± 0.7	-13.0 ± 1.0 -13.5 ± 1.5	-15.8 ± 0.4 -11.0 ± 5.7 -6 ± 8	-13.3 ± 2.6 -16.9 ± 1.0 -92 + 3	· · · · · · · · · · · · · · · · · · ·	* ****	+ +	+4.3 ± 0.8	Racemization Reactions 1.4 5 -16.3 ± 0.4 1.4 5 -12.3 ± 0.3 1.4 5 -12.0 ± 0.3 2.1 4 -1.5 ± 0.3 2.1 4 +3.3 ± 0.3 2.1 4 +3.4 ± 0.3
7 10	xxxx	o 9	9	രംഗ	ວ ວ	5 2	ມດາດ				6	zation] 5 5 4 4 4 4
1.5 1.8	1.8 1.5	2.0	2.0	1.5 1.0	1.0 1.0	1.5 1.0 1.0	1.0	1.0	1.5 1.5 1.5 1.5 1.5	1.5	2.0	Racemi 1.4 1.4 2.1 2.1 2.1 2.1 2.1
		40 45	41		H 30 35	32 30 32	00 00 00 00 00 00 00 00 00 00 00 00 00				-42 and -17 25	Isomerization: 15 25 45 45 75 75
		H_2O H_2O	H_2O	CH ₃ OH CH ₃ OH	C ₂ H ₆ OH DMSO	CH ₃ OH CH ₃ OH DMSO	CH ₃ OH C ₂ H ₅ OH DMSO	CH ₃ OH C ₂ H ₅ OH DMSO CH ₃ OH	CH3NU2 CH3OH C2,H6OH CH3Cl3	CH ₃ OH CH ₃ OH H ₂ O	DMF tmp DMF	H ₂ 0 H ₂ 0 H ₂ 0 H ₂ 0 H ₂ 0 H ₂ 0
639 640	641 $X^- = CI^-$ 642	644 PtCl ₄ ²⁻ + H ₂ O \rightarrow PtCl ₃ H ₂ O ⁻ + Cl ⁻ 645 cis-Pt(NH ₃) ₂ Cl ₂ + H ₂ O \rightarrow	$c_{45} - Ft(NH_{4)2}(CI)H_{2}O^{*} + CI^{*}$ $646 Pt(en)Cl_{2} + H_{2}O \rightarrow Pt(en)(CI)H_{2}O^{*} + CI^{*}$ $ris_{Pt}(PFt_{1},U,0,4,6,Ms,Pt)H_{7} + S \rightarrow Pt(PFt_{1},U,0,4,6,Ms,Pt)H_{7} + S \rightarrow Pt(PFt_{1},U,0,4,6,Ms,Pt)H_{7} + S \rightarrow Pt(PFt_{1},U,0,4,0,Pt)$		$S = C_2 H_6 OH$ S = DMSO $trans-Pt(PEt_a)_2(2,4,6-Me_aPh)Br +$	trans-Pt(PEt ₃) ₂ (2,4,6-Me ₃ Ph)S ⁺ + Br ⁻ 651 S = CH ₃ OH 652 S = DMSO 653 S = DMSO	cis-Pt(PEt ₃) ₂ (2,4,6-Me ₃ Ph)Br + X ^{n- \rightarrow} cis-Pt(PEt ₃) ₂ (2,4,6-Me ₃ Ph)X ⁽²⁻ⁿ⁾⁺ + Br ⁻ 654 X ⁿ⁻ = SC(NH ₂) ₂ 656 656 656	trans-Pt(PEt ₉) ₂ (2,4,6-Me ₃ Ph)Br + $X^{n-} \rightarrow$ trans-Pt(PEt ₉) ₂ (2,4,6-Me ₃ Ph)X ⁽²⁻ⁿ⁾⁺ + Br $X^{n-} = SC(NH_2)_2$ $X^{n-} = \Gamma$		W tr cir	669 $MA^{*} = Pt(NH_{3})_{6}^{4+}$ 670 $MA^{*} = Pt(NH_{3})_{6}^{6}NH_{2}^{3+}$ 671 $MA^{*} = Pt(NH_{3})_{6}^{6}O1^{3+}$ 672 $MA^{*} = Pt(NH_{3})_{6}O1^{3+}$ 673 $Nd(DMF)_{3}^{3+} + DMF \rightarrow Nd(DMF)_{3}^{3+}$ 674 $Nd(tmp)_{3}^{3+} + tmp \rightarrow Nd(tmp)_{3}^{3+}$ 675 $Hg^{2+} + Hmtpp \rightarrow Hg(mtpp)^{+} + H^{+}$	676 Cr(C ₂ O ₄) ³⁺ 677 Cr(C ₂ O ₄) ₂ (phen) ⁻ 678 Cr(C ₂ O ₄) ₂ (phen) ⁻ 679 Cr(C ₂ O ₄)(phen) ₂ ⁺ 680 Cr(C ₂ O ₄)(bpy) ₂ ⁺ 681 Cr(phen) ₃ ³⁺ 682 Cr(ppy) ₃ ³⁺
66	ဖြစ်ပဲ	စ်စ်စ်	é	රේ	తత	0000	0000	00000	రా చెంది చెంది చెంది	0 0	න් න් න් න් න් න් න	చ్ చ్ చే చే చే చే చే

remarks											1 M HCI	0.01 M HCI		0.01 M HCI						$pH = 3.1, \mu =$	1.0 M (CIO ₄ ⁻) pH = 3.0, μ =	1.0 M (ClO ₄ -) 0.05 M HClO ₄ .	$\mu = 1 M$	0.05 M DCIO4	$\mu = 1 M$	0.05 M HCIO ₄ 0.05 M HCIO ₄ ,	$\mu = 1 \text{ M}$	0.05 M DCIO.	$\mu = 1 M$		pD = 1.4, 0.5 M	0.01 M HCIO	0.01 M HClO_{4}	$\mu = 0.04 \text{ M HClO}_{4}$	0.01 M HCIO,	0.01 M HCIO	0.2 M huffer	0.2 M buffer		$\mu = 0.01 \text{ M (ClO_1)}$	$\mu = 0.01 M (ClO_1)$
ref	251	251	251	251	251	251	251	251	251	251	252	252	252	202	253	203	253 253		90, 254	137	137	255		255 255	9, 256	257 257	257	255 255	956	9, 256	255	258	258	258	258	258	88	8 88	123	259	259
$\Delta ar{V}$, $\operatorname{cm}^3 \operatorname{mol}^{-1}$ (method)																			-1.3 ± 0.8 (a)													± 0.4	-2.2 ± 0.4 (a)	-2.9 ± 0.2 (b)	-1.9 ± 0.4 (a)	$-2.6 \pm 0.4 (8)$	0.0 H		+3.2 ± 0.4 (a)		
$\Delta eta^{\dagger}, \ \mathrm{cm}^{3} \mathrm{mol}^{-1}$ kbar ⁻¹							$+4.0 \pm 0.9$	$+2.2 \pm 1.0$	$+2.5 \pm 0.8$	$+3.1 \pm 0.9$										-1.8 ± 0.6		+5 ± 0.5																	$+1.5 \pm 0.6$		
$\Delta V^*,$ cm ³ mol ⁻¹	-2.0	-5.7	-0.6	-9.3	-5.2		$+9.8 \pm 0.5$	$+5.2 \pm 0.7$	$+5.4 \pm 0.5$	+7.8 ± 0.6	-0.1 ± 0.1	$+0.6 \pm 0.2$	-9.2 ± 0.9	-1.3 ± 0.2	T10.1 ± 0.8	10.4 H 0.0	H +H	Desetion	CHEOMETRICAL ISOMETRIZATION REACTIONS $2.3 10 +6.2 \pm 1.8$	-16.6 ± 0.5	$+8.9 \pm 0.3$	$+12.4 \pm 0.4$		$+10.6 \pm 0.2$ $+11.9 \pm 0.2$	+14.5 ± 1.1	$+7.9 \pm 0.3$ $+6.5 \pm 0.4$	+5.6 ± 0.6	$+3.7 \pm 0.3$ $+2.5 \pm 0.3$	$+7.2 \pm 0.4$	 ∙	0.0 ± 0.4	- -	+5.2 ± 0.4		$+5.1 \pm 0.3$	$+0.0 \pm 0.3$ $+4.7 \pm 0.3$	$+19.9 \pm 0.4$	$+25.2 \pm 0.5$	+12.2 ± 0.7	+	$+5.2 \pm 0.3$ $+7.2 \pm 0.8$
no. of data	3	2	21	N	01 0	27 1	۰ ع	ر ت م	ں م	ഹം	יכי	ი -	4 и	5 5			* [-	l Icomoni	I Isomeria	9	9	5		ວ		ഹഹ	5	ស		4	a	9	o		9 0	0 Y	>		8	9	99
P, kbar	2.6	2.6	2.6	7.6	2.6	5.6	1.4	1.4	1.4	1.4	x x	8 F 6	100	0.0	0.7 0	0 0 1 0	2.8 2.8		ometrici 2.3	1.7	1.7	1.4		1.4 1.4		1.4 1.4	1.4	1.4 1.4			L.4	2.0	2.0		2.0	0.4	i		2.5	1.5	1.5
T, °C	50	20	55 55	63	69	0 <u>6</u>	43	43	41	88	22	R 4	2 6	2	88	50-60	20 G			08	60	46		48 46		45 45	45	45 45		9	40	25 21 r	6.1 5	31.5	31.5 20	8 8	26	64	10	30	00 00 00 00 00 00 00 00 00 00 00 00 00
solvent	DMF		CHCI	PhCI		(CH ₃) ₂ CU	C ₂ H ₆ OH		CHICIN	PDCH ₃			H_O	TCH	DCF DCF	CH-CN	DMF		CHCI3	H_2O	H_2O	H_2O		D_2^0	H_2O	H20 H20	H_2O	D20 D20	0°H	H ₂ 0	D20	H_2O	П20	H_2O	H ₂ 0	H ₂ O	0°H	$H_{2}^{-}O$	CH2Cl2	CH ₃ OH	CH ₃ OH CH ₂ OH
reaction	Co(Ph ₂ dtc) ₃					(-+[]+-)	Co(pyrdtc) ₃			Niturban) (hana)2+		Ni(nhan)(hnu) 2+		(Je(Brac), +	00(000)3				cis -+ trans-TiCl ₄ -2TMPA	trans → cts-Ur(U ₂ U ₄) ₂ (H ₂ U) ₂	trans \rightarrow cis-Cr(CH ₂ C ₂ O ₄) ₂ (H ₂ O) ₂ ⁻	trans $\rightarrow cis$ -Co(en) ₂ (H ₂ O) ₂ ³⁺			trans \rightarrow cis-Co(en) ₂ (H ₂ O)OH ²⁺	trans $\rightarrow cts$ -Co(en) ₂ (CH ₃ COO)H ₂ O ²⁺			trans -+ cis-Co(en),(SeO ₃)H,O ⁺	trans cis-Co(en) ₂ (SeO ₃ H)H ₂ O ²⁺		$trans \rightarrow cis$ -Co(en) ₂ (Cl)H ₂ O ²⁺					$\beta \rightarrow \alpha$ -Co(edda)(tn) ⁺	$\beta \rightarrow \alpha$ -Co(edda)(en) ⁺	$trans \rightarrow cis$ -SNCl ₄ ·2Me ₂ S $cis \rightarrow trans$ -Pt(PEt_),(R)X	$\mathbf{R} = \mathbf{Ph}, \mathbf{X}^{-} = \mathbf{CI}^{-}$	$\mathbf{R} = \mathbf{Ph}, \mathbf{X}^- = \mathbf{Br}^-$ $\mathbf{R} = \mathbf{Ph}, \mathbf{X}^- = \mathbf{I}^-$
no.	683	5 5 7 7 7 7 7	000 000	000	190	000	800	060	160	2602	020 607	109 109	969	697	698	669	200		101	207	703	704	1	705 706	707	80/.	710	711 712	713	714	011	716		718	06L	721	722	723	724	725	726 727

$\mu < 10^{-6} \text{ M}$ $\mu = 0.01 \text{ M} (\text{ClO}_4^-)$	$\mu = 0.1 M$ $\mu \sim 0$ 0.1 M NaOH $\mu \sim 0$ $\mu \sim 0$ 0.001 M NH_4NO_3, = 0.2 M (NO1)	$\mu = 0.2 \text{ m M} (M_{0}^{-1})^{2}$ $\mu = 1.0 \text{ m (Clo_{1}^{-1})}$ $\mu = 1.0 \text{ m (Clo_{1}^{-1})}$ $\mu = 0.5 \text{ m (Clo_{1}^{-1})}$ $\mu = 0.5 \text{ m (Clo_{1}^{-1})}$	$\mu = 0.5 \text{ M (ClO_1^-)}$ $\mu = 0.5 \text{ M (ClO_1^-)}$ $\mu = 0.5 \text{ M (ClO_1^-)}$	$\mu = 0.5 \text{ M } (\text{CIO}_4^-)$ 0.01 M HCIO ₄		$\mu = 0.1 \mathrm{M}$	μ = 0.1 M μ = 0.1 M μ = 0.5 M	μ = 0.1 M	$\mu = 3.0 \ m \ (ClO_4^{-})$	$\mu = 3.0 \ m \ (\text{ClO}_4^{-})$ $\mu = 1.0 \ m \ (\text{ClO}_4^{-})$	$\mu = 1.0 \ m \ (\text{ClO}_4^{-})$ $\mu = 1.0 \ m \ (\text{ClO}_4^{-})$	$\mu = 1.0 \text{ M} (\text{NO}_3^-)$	$\mu = 1.0 \text{ M} (\text{NO}_3^-)$
260 260	261 262 263 263 264 264	200 265 266 266 266	266 266 267	267 268	269	269 261	238 238 270	270 270 261	271	271 271	271 271, 272	273	273
	-12.9 ± 1.5 (b)				-7.2 ± 1.0 (a)	-4.5 ± 0.8 (a)							
	+5 ± 2												
-12.0 ± 0.5 -10.0 ± 0.3	Isomerization Reactions 8 -6.7 ± 0.4 4 -6.5 ± 0.2 7 $+27 \pm 1.4$ 5 -5.7 ± 0.5 5 -3.6 ± 0.3 5 -6.8 ± 0.7 7 -16 ± 2	-12 ± 2 -5.3 ± 0.8 -1.0 ± 1.2 -5.6 ± 0.6 -6.9 ± 0.6	-3.4 ± 0.2 -3.6 ± 0.4 +19.7 ± 1.1	+13.6 ± 1.2 -9.0 ± 0.7		-7.4 ± 0.4	-10.1 ± 0.3 -9.5 ± 0.5 -10.8 ± 0.3 0 ± 2	0 ± 2 0 ± 2 small pos -5.9 ± 0.6	Addition Reactions 6 −6.0 ± 0.4	−0.1 ± 0.3 −19 ± 2	+13 ± 1 -3.3 ± 0.2	-18.6 ± 0.3	-3.9 ± 0.2
8 4	someriz 8 7 5 5 7 7 7	~12 7 6 4	4 8 9	6 4	5	99	6 8 6	2	ldition] 6	9 9	99	7	٢
1.8 1.5	Linkage 1 2.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	4.0 1.5 1.5 1.0	1.5 1.7 1.0	1.0	1.4	1.7 1.3	1.5 2.0 2.2 2.2	2.2 2.2 1.5	Ac 1.2	1.2 1.2	1.2 1.2	1.2	1.2
30 30	5 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	11 50 35 35	35 35 25	25 60	25	52	18 30 30 18 30 30	30 ⁻ 3 29	25	25 25	25 25	25	25
CH ₃ OH CH ₃ OH	H ₂ O H ₂ O H ₂ O MFA DMSO SFL NH ₃	NH ₃ H20 DMS0 H ₂ 0 H ₂ 0	H ₂ 0 H ₂ 0 H ₂ 0	Н ₂ 0 Н ₂ 0	CHC13	CHCI ₃ H ₂ O	H ₂ O DMF H ₂ O CHCl ₅	CHCI, CHCI, CH ₂ CI, H ₂ O	0 ² H	Н20 Н20	H ₂ 0 H ₂ 0	H_2O	H_2O
$\mathbf{R} = 2,4,6\text{-}Me_3Ph, \mathbf{X}^- = \mathbf{Br}^-$	Co(NH ₃)₅ONO ²⁺ → Co(NH ₃)₅NO ₂ ²⁺	Co(NH ₃) ₅ SCN ²⁺ → Co(NH ₃) ₅ NCS ²⁺ cis-Co(en) ₂ (ONO) ₂ ⁺ → cis-Co(en) ₂ (NO ₂)ONO ⁺ → cis-Co(en) ₂ (NO ₂)ONO ⁺ →	$cis-Co(en)_2(NO_2)_2^+ \rightarrow trans-Co(en)_2(ONO)_2^+ \rightarrow trans-Co(en)_2(NO_2)_2^+ \rightarrow trans-Co(en)_2(ONO)_2^+ \rightarrow cis-Co(en)_2(ONO)_2^+ \rightarrow ONO)_2^+ \rightarrow ONO(en)_2^+ \rightarrow O$	$cis-Co(en)_2(NO_2)_2^+$ trans-Co(en)_2(ONO)_2^+ $\underbrace{OH}_{trans-Co(en)_2(NO_2)_2^+}$ Co(en)_2(OS(O)CH_2OH_2NH_2)^{2+} \rightarrow	Co(en) ₂ (SO ₂ CH ₂ CH ₂ NH ₂) ²⁺ Ni(1,4-Et ₂ en) ₂ (ONO) ₂ → Ni(1,4-Et ₂ en) ₂ (NO ₂) ₂	Ni(1,4-Me ₂ en) ₂ (\dot{O} NO) ₂ \rightarrow Ni(1,4-Me ₂ en) ₂ (NO ₂) ₂ \rightarrow Rh(NH ₃) ₆ ONO ² \rightarrow Rh(NH ₃) ₆ NO ₂ ²⁺	$Pa(L)SCN^{-} \rightarrow Pa(L)NCS$ $L = 1,1,7,7-Et_{4}dien$ $L = 4-Me-1,1,7,7-Et_{4}dien$ $trans-Pd(SCH_{2}CMe_{2}CH_{2}L_{2}Br_{2} i.a.S$	trans-Pd(SCH ₃ CH ₃ CH ₂ CH ₂ Cl ₃ i.a.S trans-Pd(S(CH ₃) ₈) ₂ Cl ₂ i.a.S trans-Pd(SCH ₃ CMe ₂ CH ₃) ₂ Cl ₂ i.a.S Ir(NH ₃) ₆ ONO ²⁺ → Ir(NH ₃) ₅ NO ₂ ²⁺	$TiO^{2+} + H_2O_2 \rightarrow Ti(O_2)^{2+} + H_2O$	$\begin{array}{l} TiO^{24} + H_2O_2 \stackrel{H^+}{\longrightarrow} Ti(O_2)^{24} + H_2O \\ TiO(nta)(H_2O) + H_2O_2 \rightarrow \\ Ti(O_3)(nta)(H_2O)^7 + H_2O \end{array}$	$\begin{array}{c} TiO(nta)(H_2O) + H_2O_2 \xrightarrow{H^+} \\ Ti(O_2)(nta)(H_2O)^- + H_2O \\ TiO(tpypH_4)^{4+} + H_2O_2 \end{array}$	Ti(O ₂)(tpypH ₄) ⁴⁺ + H ₂ O TiO(tmpyp) ⁴⁺ + H ₂ O ₂ → Ti(O ₃)(tmpyp) ⁴⁺ + H ₃ O	TiO(tmpyp) ⁴⁴ + H ₃ O ₂ H ⁴ Ti(O ₃)(tmpyp) ⁴⁴ + H ₃ O ⁴
728 729	730 731 732 733 733 735 735	737 738 739 740 741	742 743 744	745 746	747	748 749	750 751 752 753	754 755 756 757	758	759 760	761 762	763	764

(Continued)	
TABLE I	

по.	reaction	solvent	T, °C	<i>P</i> , kbar	no. of data	$\Delta V^{*}, \ cm^{3} mol^{-1}$	$\Deltaeta^{st}, \ { m cm}^3 { m mol}^{-1} \ { m kbar}^{-1}$	$\Delta V, \ { m cm}^3 { m mol}^{-1}$ (method)	ref	remarks
765	VO ₂ (nta) ²⁻ + H ₂ O ₂ → VO(O ₂)(nta) ²⁻ + H ₂ O	H ₂ O	25	1.5	~ 10	-3.4 ± 0.5			56	$\mu = 1.0 \ m \ (\text{ClO}_4^-)$
766	$VO_2(nta)^2 + H_2O_2 \xrightarrow{H^4}_{VO(0,1/nta)^2} + H_0$	H_2O	25	1.5	~ 10	$+1.5 \pm 0.5$			56	$\mu = 1.0 \ m \ (\text{ClO}_4^-)$
767	$Fe(CO)_{3}HTE + TCNE \rightarrow Fe(CO)_{3}HTE + TCNE$	CH2Cl2	25	0.7	5	-29 ± 3			274	
768 760		Me ₂ CO	25	0.5	4	-# ·			274	
017	Co(NH ₃) ₆ OH ²⁺ + NO ⁺ → Co(NH ₃) ONO ²⁺ + H ⁺	H ₂ O	S 22	1.5	3	-31 ± 5 -1.8 ± 0.7			27 4 275	pH = $3.7, \mu = 2$ M
171	$C_{0}(\mathbf{NH}_{1}, \mathbf{D}, \mathbf{C}) + C_{0} \rightarrow C_{0}(\mathbf{NH}_{2}, \mathbf{C}) + C_{0} \rightarrow C_{0}(\mathbf{NH}_{2}, \mathbf{D}, \mathbf{C}) - C_{0} + 1 + 1$	H_2O	25	1.0	5	-10.1 ± 0.6			276	$pH = 8.5, \mu = 0.5 M$
772	$Co(en)_{chen}^{chen}Co(en)_{chen}^{chen}Chen_{chen}^{chen}Chen^{chen}$	H_2O	25	1.9	5	+9.2 ± 2.3			277	$\mu = 1.1 \text{ M (ClO_4^-)}$
773	$Co(cor)_{2}(hfsc)^{2+} + H_2O \rightarrow Co(cor)_{2}(hfsc)^{2+} + H_2O \rightarrow Co(cor)_{2}(hfsc,OH)^{+} + H^{+}$	H_2O	25	1.9	5	-4.2 ± 2.1			277	$\mu = 1.1 \text{ M } (\text{ClO}_4^-)$
	$Co(L)hfac^{+} + OH^{-} \rightarrow Co(L)(hfac-OH)^{(z-1)+}$	H_2O	25						278	
775 776	$L = (NH_g)_4$ $L = (en)_2$ $I = 2e^4 risc$							$+11.2 \pm 0.4 (b)$ $+10.7 \pm 0.1 (b)$		
	$L = \alpha$ -trien L = β -trien							$+8.9 \pm 0.4$ (b) $+11.1 \pm 0.3$ (b)		
811 917	$L = i - dtma$ $L = \alpha - edda$							± 0.5 ± 0.9		
781 781	$L = \beta \text{-edda}$ $Rh(NH_3)_5OH^{2+} + CO_2 \rightarrow DLONT(2) + CO_2 \rightarrow DLONT(2) + CO_2 + DLONT(2) + CO_2 + DLONT(2) + CO_2 + DLONT(2) + DLO$	H_2O	25	1.0	5	-4.7 ± 0.8		-3.9 ± 0.3 (b)	276	$pH = 8.5, \mu = 0.5 M$
782	$\lim_{1 \le N \le 1} (NH_2^{N}, CO_2^{-1} + D)$	H_2O	25	1.0	5	-4.0 ± 1.0			276	pH = 8.5, μ = 0.5 M
783	Ir(P(DP) ₃)CO2 + H Ir(P(DP) ₃)CO2 + HCl →	PhCH ₃	25	1.0	5	-20.5 ± 1.4			279	
784	$\frac{1}{\Gamma(col}(cbc) + 0 c - \frac{1}{2}$	CH ₃ OH	40	1.5	4	-31.1 ± 1.7			280	0.01 M LiCl
785	Ir(cod)(phen)I + $O_2 \rightarrow$ Ir(cod)(phen)I + $O_2 \rightarrow$ Ir(cod)(phen) O_2^+ + I ⁻	CH ₃ OH	25	0.7	4	-44.4 ± 1.6			280	0.5 M LiCl
	(\;(H,0),R ²⁺ + H.0 → (',(H.0), ²⁺ + P		н	liminat	Elimination Reactions	tions				
186		H_2O	25	1.0	5	+15.1 ± 1.6			281	$\mu = 1.1 \text{ M } (\text{ClO}_{1})$
787 788		H_2^0	25 63	3.0 3.5	10	$+26 \pm 2$ $+20.0 \pm 0.9$	+0.7 ± 0.6		281 282	$\mu = 0.22 \text{ M} (\text{ClO}_{4})$ 0.026 M HClO.
789	$Cr(H_2O)_bR^{2*} + H_2O \rightarrow Cr(H_2O)_5OH^{2+} + RH$ R = C(CH ₅),OH	H _o O	15	10	7	+03+09			100	
790 791	L = C(CH3)2H Co(NH3)-OCO.H2+ →	H ₂ O	25 25	3.0	- LO L	-0.2 ± 0.2			281 281	$\mu = 1.0 M (ClO_4)$
	$C_0(NH_3)_5OH^{2+} + CO_2$	1120	3	1.0	n	70.0 ± 0. 3			2/6	$[H^{T}] = 0.1 \text{ M},$ $\mu = 0.5 \text{ M}$
792	cis -Co(en) ₂ (H ₂ O)OCO ₂ H ²⁺ \rightarrow cis-Co(en) ₆ (H ₅ O)OH ²⁺ + CO ₅	H_2O	25	1.0	5	-1.1 ± 1.2			283	$[H^+] = 2 M,$
793	α -Co(edda)(H_2O)OCO ₂ $H \rightarrow \alpha$ -Co(edda)(H_2O)OCH + CO.	H_2O	25	1.0	5	-0.7 ± 2.4			283	$\mu = 0$ M, $H^{+} = 1$ M, $H^{-} = 0$ M, $H^{-} = $
794	β -Co(edda)($H_2O)OCO_2H \rightarrow C_2$ β -Co(edda)($H_2O)OCO_2H \rightarrow C_2$	$0_{2}H$	25	1.0	5	+0.3 ± 1.4			283	$\mu = 2 M$ $[H^+] = 2 M,$
795	$Co(nta)(H_2O)OCO_2H^{-} \rightarrow C_2$ $Co(nta)(H_2O)OCO_2H^{-} \rightarrow C_2$ $Co(nta)(H_2O)OH^{-} + CO_2$	H_2O	25	1.0	5	-1.5 ± 1.7			283	$\mu = 3 M$ [H ⁺] = 2 M,
962	$Co(en)_2(hfac-OH)^+ \rightarrow Co(en)_2(hfac-OH)^+ \rightarrow Co(en)_2(hfac)^{2+} + OH^-$	H_2O	25	1.9	л С	+2.9 ± 2.3			277	$\mu = 3 \text{ M}$ $\mu = 1.1 \text{ M} (\text{ClO}_{4})$

+++ _@ +++++++++		276 276	$[H^+] = 0.1 M,$ $\mu = 0.5 M$ $[H^+] = 0.1 M,$
		276	$H^{+1} = 0.1 M.$
			$\mu = 0.5 \text{ M}$
-13.0 ± -21.1 ± -21.3 ± -22.8 ± +3.3 ±		284	$\mu = 1 \text{ M (ClO_4^-)}$
-21.1 ± -21.3 ± -22.8 ± +3.3 ±		284	$\mu = 1 \text{ M (ClO_4^-)}$
-21.3 ± -22.8 ± +3.3 ±		285	K^+ medium,
-22.8 ± +3.3 ±		285	$\mu = 1.1 \text{ M}$ $Na^{+} \text{ medium},$ $\mu = 1.1 \text{ M}$
$10 -1.1 \pm 0.3$ 6-10	-6±3	286 286 287	$\mu = 1.1 \text{ M}$ $\mu = 1.1 \text{ M}$ $\mu = 1.1 \text{ M}$ $\mu = 1.1 \text{ M}$
-2.4 ± 0.8 -2.1 ± 0.8 -5.5 ± 0.5 -10.2 ± 0.5			
-13.3 ± 0.9 -17.4 ± 1.3 -20.2 ± 1.6	-4.5 ± -8.2 ±		
-19.7 ± 2.4 +13	-8.1 ±	288	1 M KCl
			1 M NaCl 1 M LiCl
0 +		289, 290	
-13.8 ± 1.1 -5.1 ± 1.4 ~0		167, 166	
$+10.7 \pm 0.1$		291	recalcd from lit.
$+10.3 \pm 0.4$ $+8.7 \pm 0.3$		292	$\mu = 0.5 \text{ M} (CIO_4)$ recalcd from lit.
+3.8 ± 0.7 +6.4 + 1.1		292 291	$\mu = 0.5 \text{ M (ClO_4^-)}$
$+0.0 \pm 0.4$ $\pm 19.1 \pm 0.5$		292	$\mu = 0.5 \text{ M} (\text{ClO}_4^-)$
H H		291	$\mu = 0.3 \text{ M}$ [H ⁺] = 0.1 M,
-9.2 ± 5.5	$+10.9 \pm 5.6^{b}$	293	$\mu = 0.3 \text{ M}$ [H ⁺] = 0.02 M, $H_{-} = 0.02 \text{ M}$
+++	-15.4 ±		$pH = 4.7, \mu = 0.5 M \mu = 0.5 M (CIO_4^-)$
$+30.7 \pm 1.3$ $+98.9 \pm 1.4$		296 296	$\mu = 1.0 \text{ M} (\text{ClO}_4^-)$ $\mu = 1.0 \text{ M} (\text{ClO}^-)$
$+23.9 \pm 1.0$			$\mu = 1.0 \text{ M}$
+++		296	$\mu = 1.0 \text{ M} (\text{ClO}_{4})$ $\mu = 1.0 \text{ M} (\text{ClO}_{2})$
1 - 11			$\mu = 1.0 \text{ M}$
	$\begin{array}{c} -10.2 \pm 0.5 \\ -17.4 \pm 1.3 \\ -20.2 \pm 0.5 \\ -13.3 \pm 0.9 \\ -13.3 \pm 0.9 \\ -13.3 \pm 0.9 \\ -9.4 \pm 1.3 \\ -9.4 \pm 0.9 \\ -5.1 \pm 1.4 \\ -5.1 \pm 1.4 \\ -5.1 \pm 1.4 \\ -5.1 \pm 1.0 \\ -6.1 \pm 1.0 \\ +18.7 \pm 0.3 \\ +28.5 \pm 2.4 \\ +28.5 \pm 2.4 \\ +28.9 \pm 1.4 \\ +2$	-4.5 ± 0.6 -8.2 ± 1.4 -8.1 ± 2.0 -8.1 ± 2.0 +1.0 + 10.9 ± +10.9 ± +10.9 ± +10.9 ± +11.± 3 +2.3.4 ±	$\begin{array}{c} -4.5\pm0.6\\ -8.2\pm1.4\\ -8.1\pm2.0\\ -8.1\pm2.0\\ 288\\ 288\\ 288\\ 289\\ 290\\ 291\\ 291\\ 291\\ 291\\ 291\\ 291\\ 291\\ 291$

(Continued)	
	l
TABLE	

по.	reaction	solvent	T, °C	P, kbar	no. of data	$\Delta V^*,$ cm ³ mol ⁻¹	$\Delta eta^*, \ \mathrm{cm}^3 \mathrm{mol}^{-1}$ kbar $^{-1}$	$\Delta V,$ $cm^3 mol^{-1}$ (method)	ref	remarks
839	$C_0(NH_3)_6OSO_2^+ \xrightarrow{H^+} C_0^{-2*} + 5NH_1^+ + SO_2^-$	H_2O	25	1.0	5	+34.4 ± 2.9			298	pH = 6.2 μ = 1 M
840 841	$Co_{2}(\mu-O_{2})NH_{2})(en)_{4^{+}}^{4^{+}} + W_{2}O(OH)(h_{2}d_{4^{+}})^{2^{-}} = mod^{1/2}d_{4^{-}}$	H20 H20	14.4 25	1.0	Ð	$+34.6 \pm 0.5$ +11.8 ± 0.8		+7.8 ± 3.7 ^b	298 297	$pH = 6.2, \mu = 1 M$ $\mu = 0.1 M$
842	$Mo_2U_4(UII)(Ineuta)^- \longrightarrow products Co_2(\mu-O_2)(NH_3)_{10}^{6+} + Mo_2O_4(edta)^{2-} \rightarrow modulote$	H_2O	41	2.9	10	$+12.1 \pm 1.9$	-6.2 ± 2.2	$+23.7 \pm 3.0^{b}$	299	$\mu = 0.1 \text{ M}$
843 844 845 846	$\begin{array}{l} Co_{2}(\mu-O_{2})(\mathrm{en}_{4}(\mathrm{NH}_{3})_{2}^{*+} \rightarrow \mathrm{products}\\ Co_{2}(\mu-O_{2})(\mathrm{dien})_{2}(\mathrm{en})_{2}^{*+} \rightarrow \mathrm{products}\\ Co_{2}(\mu-O_{2})(\mathrm{dien})_{2}(\mathrm{R}-\mathrm{pn})_{2}^{*+} \rightarrow \mathrm{products}\\ Co_{2}(\mu-O_{2},\mathrm{NH}_{2})(\mathrm{en})_{2}^{*+} + \mathrm{TMPNO} \rightarrow \\ Co_{2}(\mu-O_{2},\mathrm{NH}_{2})(\mathrm{en})_{2}^{*+} + \mathrm{TMPNO} \rightarrow \end{array}$	${ m H_2^0}{ m H_2^0}{ m H_2^0}{ m H_2^0}$	20 45 15	2.0		+23.8 ± 0.3 +18.8 ± 0.3 +21.3 ± 0.6 +0.2 ± 0.5			297 297 300	$\mu = 0.1 \text{ M}$ $\mu = 0.1 \text{ M}$ $\mu = 0.1 \text{ M}$ $\mu = 0.1 \text{ M}$
847 848	$Co_{2}(\mu-U_{5},\operatorname{MT}_{2})(\operatorname{en})_{4}^{*} + 1 \operatorname{MT}_{1} \operatorname{MU}_{5}$ $(\mathrm{NH}_{3})_{6}Co^{\mathrm{III}}(\mu-\mathrm{p2})_{7}\operatorname{Fe}^{\mathrm{II}}(\mathrm{CN})_{5} \rightarrow$ $C_{2}^{*} + U_{2}^{*}(\operatorname{MT}_{5})$	${ m H_20}{ m H_20}$	15 25	1.0 0.7		-1.4 ± 1.3 +38 ± 1			300 301	$\mu = 0.5 \text{ M}$ pH = 5, $\mu = 0.1 \text{ M}$
849	$\begin{array}{c} \operatorname{Co}^{\operatorname{OC}} + \operatorname{Fe}(\operatorname{III})\\ (\operatorname{en})_2 \operatorname{Co}^{\operatorname{III}}(\operatorname{pzc}) \operatorname{Fe}^{\operatorname{III}}(\operatorname{CN})_5 \\ \operatorname{Co}^{24} + \operatorname{Fe}(\operatorname{III}) \end{array}$	H_2O	25	0.7	က	+24			302	
850		60%MeOH/ H ₂ 0	25	0.7	ŝ	-+7			302	
	M₀O(L)H₄O ⁶⁺ + H₂O ₂ ^{H+} M₀(0,)(L)H,O ⁶⁺ + OH	H_2O	35	1.2	9				220	
851 852 853	L = tpyp L = tpyp $Mo_2O_4(OH)(hedta)^{2-} + IrCl_6^{2-} \rightarrow$ products	H ₂ O	25			+1.3 ± 0.3 +4.7 ± 0.4 -12.3 ± 1.4			297	μ = 0.1 M
06.4		P	Photochemical Substitution Reactions	cal Subs	titution F	leactions				
4 00	$\rightarrow cis-Cr(NH_3)_4(CI)H_2O^{2+} + NH_3$	H_2O	20	1.5	4	-9.4 ± 0.4			303	$[H^+] = 0.01 \text{ M},$
855	→ Cr(NH ₃) ₅ H ₂ O ³⁺ + Cl ⁻	H ₂ O	20	1.5	4	-13.0 ± 0.5			303	$\mu = 0.5 \text{ M}$ [H ⁺] = 0.01 M,
856	Cr(NH ₃) ₆ Br ²⁺ → cis-Cr(NH ₃) ₄ (Br)H ₂ O ²⁺ + NH ₃	H_2O	5	1.5	4	-10.2 ± 0.1			303	$\mu = 0.5 \text{ M}$ [H ⁺] = 0.01 M,
857	→ Cr(NH ₃) ₅ H ₂ O ³⁺ + Br	H_2O	5	1.5	4	-12.2 ± 0.3			303	$\mu = 0.5 \text{ M}$ [H ⁺] = 0.01 M,
858	Cr(NH ₃) ₆ NCS ²⁺ → cis-Cr(NH ₃) ₄ (NCS)H ₂ O ²⁺ + NH ₃	H_2O	15	1.5	4	-11.4 ± 0.1			303	$\mu = 0.5 \text{ M}$ [H ⁺] = 0.01 M,
859	$\rightarrow Cr(NH_3)_5H_2O^{3+} + SCN^-$	H_2O	15	1.5	4	-9.8 ± 0.2			303	$\mu = 0.5 \text{ M}$ [H ⁺] = 0.01 M,
860	$Cr(bpy)_3^{2+} + 2H_2O \rightarrow C_{Conv}$	H_2O	22	2.3	4	+2.9 ± 1.2			304	$\mu = 0.5 \text{ M}$ pH = 10, $\mu =$
861	$Cr(UP)_{2}(OH_{2})_{2}^{+} + H_{2}O \rightarrow Cr(NH_{3})_{8}^{+} + H_{2}O \rightarrow Cr(NH_{2})_{1} + LO^{3+} + NH_{2}$	H_2O	15	1.0	5	-12.6 ± 0.5			305	1 M (NaCl) $[H^+] = 0.01 M,$
862	$Cr(NCS)_{0}^{*}$ + $H_{2}O$ + $Cr(NCS)_{1}^{*}$ + $H_{2}O$ + $Cr(NCS)_{1}^{*}$ + $H_{2}O$ + $Cr(NCS)_{1}$ + $Cr(NCS)_{2}$ + SCN^{-}	H_2O	15	1.0	5	+2.9 ± 0.6			305	$\mu = 0.010 \text{ M}$ $[\text{H}^+] = 0.1 \text{ M},$ $\mu = 0.5 \text{ M}$
863 864	$\begin{array}{l} C_{r}(CN)_{6}^{*}+H_{2}O\rightarrow C_{r}(CN)_{6}H_{2}O^{2}+CN^{*}\\ Fe(CN)_{6}^{*}+H_{2}O\rightarrow Fe(CN)_{6}H_{2}O^{3}+CN^{*}\end{array}$	H20 H20 30% 540H	15 23	1.5 5.5	280	$+3.0 \pm 0.2$ +6.2 ± 0.4 +5.1 ± 0.4			305 157	$\mu = 0.3 \text{ M}$ pH = 8.9, $\mu = 0.3 \text{ M}$
865	$C_0(NH_3)_5Br^{2+} + H_2O \rightarrow C_0(NH_3)_5H_0O^{3+} + Br^{-}$	H ₂ 0	20 20 20	2.8	5 6	-0.4 ± 3.2			306	pH = 4, buffer
866	$\operatorname{Co}(\operatorname{CN}_5^{2^*} + \operatorname{H}_2^{-1}\operatorname{O} \to \operatorname{Co}(\operatorname{CN}_5 \operatorname{H}_2^{-1}\operatorname{O}^{2^*} + \operatorname{CN}^{-1}\operatorname{Ru}(\operatorname{bpy})_3^{2^*} + \operatorname{S} \to \operatorname{products}$	H_2O	15	1.5	7	+2.0 ± 0.2			305 307	$\mathrm{pH}=6,\mu\sim0$

Activation and Reaction Volumes in Solution

	9 M LiCl			10 ⁻³ -10 ⁻² M HClO ₄		10 ⁻³ -10 ⁻² M HClO ₄			10 ⁻³ -10 ⁻² M HClO ₄				10 ⁻³ -10 ⁻² M DCIO		10 ⁻³ -10 ⁻² M HClO ₄		10 ⁻³ -10 ⁻² M DClO ₄ 10 ⁻³ -10 ⁻² M DClO ₄	10 ⁻³ -10 ⁻² M HClO ₄	10 ⁻³ -10 ⁻² M HClO ₄	(_'())		10 ⁻³ M HClO ₄	10 ⁻³ M HClO ₄	10 ⁻³ M HClO4	0.01 M HCIO.	FOIOIT IN TAVA	10 ⁻³ -10 ⁻² M HClO ₄	10 ⁻³ M HCIO ₄	10 ⁻³ M HClO ₄
		307 307 307	308	74	309	47	310		47	310	310	010	47	14	47	41	47 47	74	74	311	110	312	312	312	896	002	312	312	312
+12 +14 +22 +10	+12 +17 +17	+9 +18 +?7	+1.1 ± 0.4	+3.9 ± 0.5	$+3.8 \pm 0.4$	-8.6 ± 1.6	-4.9 ± 1.1 -8.9 ± 2.7	L	$+9.3 \pm 1.9$	-#	$+3.3 \pm 1.8$ $\pm 7.6 \pm 1.1$	н	-7.7 ± 1.6	н	+ -	H	-5.3 ± 1.8 $\pm 7.5 \pm 1.1$	4 - + 1	-3.9 ± 0.6	-	0.0 + 1.6	+9.3 ± 0.8	$+2.8 \pm 0.6$	+2.9 ± 0.7	Photochemical Isomerization Reactions	0.0 ± 0.01	-3.5 ± 0.3	0.0 ± 0.4	-2.3 ± 0.3
				5		6	6 и	,	6	6	ഹം	n	60	מ	6	מ	ac a	o ro	5	. ц	0	5	5	5	erizatio o	n	5	5	νο
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0	3.0 0.0 0.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	1.0	7.0	2.0	7.0	2.0	2.0	2.0	2.0	2.0	06	0.7	2.0	2.0	2.0	nical Isom	7.0	2.0	2.0	2.0
50 52 60 52 15 60 52 60 52 15	8 8 8	15 25 60	25	25	25	25	25 30	8	25	25	88	9	25 25	8	25 25	62	25 35	25	25	36	3	25	25	25	Photochen	67	25	25	25
CHOCN CHOCN	H2O CH.CI,	CH ₃ CN CH ₃ CN CH ₂ CN	H ₂ O	H ₂ 0	H ₂ O	0°H	FMA		0°H	FMA	DMSO	DMF	D20	D20	H20	H2O	D20	H20 H	0°H	n O	0211	H_2O	H_2O	H_2O	0 n	П20	H_2O	H_2O	H_2O
	$S = In_2 U$, Cl sait $S = CH_3 Cl_3 Cl^2$ sait	Ru(phen) ₃ ²⁺ + CH ₃ CN → products	$\underset{\substack{\text{B}(H^{\circ},C_{0},H_{6})(H_{2}O)_{3}^{2+}+3H_{2}O}{\text{B}(H^{\circ}O)_{2^{+}}+C}$	$Rh(NH_3)_6 \rightarrow C_{6H_6}$ $Rh(NH_3)_6^{3+} + H_2O \rightarrow$ $Rh(NH_a)_{*}H_{*}O^{3+} + NH_{*}$	$Rh(NH_3)_{6D}^{34} + H_2O \rightarrow Rh(NH_3)_{6H_2O}^{34} + py$	$Rh(NH_3)_6Cl^{2+} + S \rightarrow Rh(NH_3)_6S^{3+} + Cl$ S = H ₂ O	S = FMA S = DMSO	$Rh(NH_3)_{CM24}^{CM24} + S \rightarrow$	$S = H_oO$	S = FMA	S = DMSO	S = DIMF Rh(ND_).Cl ²⁺ + D_0	$\rightarrow \text{Rh}(\text{ND}_3)_{\text{6D}} \rightarrow \text{CI}^{22}$	$\stackrel{\leftarrow}{\longrightarrow} \operatorname{Rans-Kn}(\operatorname{NL}_3)_4(\operatorname{U2O})\operatorname{Cl^*} + \operatorname{NL}_3$ Rh(NH_3), Br^{2+} + H_5O	+ Br ⁻	→ trans-Kh(NH ₃)₄(H ₂ U)Br ²⁷ + NH ₃ Rh(ND ₃) ₆ Br ²⁺ + D ₂ O	$\rightarrow \text{Rh}(\text{ND}_3)_5\text{D}_2\text{O}^{3+} + \text{Br}^{-1}$		trans-Rh(NH ₃),(I)H ₂ O ²⁺ + NH ₃ Rh(NH ₃),SO ₂ ⁺ + H ₃ O \rightarrow	$\frac{Rh(NH_3)_6H_2O^{3+} + SO_4^{2-}}{C_1 + L + U + C_2}$	cis -twi(upy) ₂ U_{12} + Π_{2}^{0} - cis -Rh(bbv) ₅ (H ₅ O)Cl ²⁺ + Cl ⁻	cis-Rh(NH ₃), $Br_2^{++} + H_2O \rightarrow DL(NH_3)$, $H_2O \rightarrow DL(NH_2)$, $H_2O + \frac{1}{2}$ NH		trans-kn(NH ₃) ₄ (H ₂ O)Ct ²⁺ + Cl trans-Rh(NH ₃) ₄ Br ₂ ²⁺ + H ₂ O \rightarrow trans-Rh(NH ₃) ₄ (H ₂ O)Br ²⁺ + Br ⁻		Colena(OS(O)CH_CH_NH2)	cis - $Rh(NH)_{CI}$, $H_{2}O \rightarrow cis$ - $Rh(NH)_{CI}$, $H_{2}O \rightarrow cis$ - $h(NH)_{CI}$, $h_{2}O \rightarrow cis$ - $h(NH)_{2} + h_{2}O \rightarrow cis$ - $h(NH) + h(NH)_{2} + h(P)$	-	$\frac{trans-ration_3}{cis-Rh(NH_3)} Rr_2^{1} + H_2^{0} \rightarrow \frac{trans-Rh(NH_3)}{trans-Rh(NH_3)} + Br^{-1}$
867 868 870 871	873 874 874	875 876 876	878	879	880	881	882 883 883	200	884	885	886 799	ò 88		80 80 80 80 80 80 80 80 80 80 80 80 80 8		891 892	600	894 894	895	200	060	897	868	668	000	202	901	902	903

				a	ۍ د د د	4 1/ #	$\Delta \beta^{*}$, == $\frac{3}{2}$,	ΔV, 3		
no.	reaction	solvent	T, °C	kbar	data	$cm^3 mol^{-1}$	kbar ⁻¹	(method)	ref	remarks
904	$cis-Rh(NH_3)_4(H_2O)Br^{2+} \rightarrow trans-Rh(NH_2)_1(H_2O)Br^{2+}$	H_2O	25	2.0	5	-1.0 ± 0.4			312	10 ⁻³ M HClO ₄
905	trans-Rh(NH ₃) ₄ (OH)Cl ⁺ \rightarrow cis-Rh(NH ₃) ₄ (OH) ₂ ⁺ + Cl ⁻	H_2O	25	2.0	5	-8.8 ± 0.7			312	0.1 M NaOH
		Ч	Photochemical Electron-Transfer Reactions	Electror	n-Transfer	Reactions			4	
906	$\mathbf{Fe}(\mathbf{UN}_{6}\mathbf{NO}^{-} + \mathbf{S}^{-+} \mathbf{Fe}(\mathbf{UN}_{6}\mathbf{S}^{-} + \mathbf{NO}^{-} \mathbf{S}^{-} $	0°H	97	2.0	Q	$+8.8 \pm 0.4$			313	λ. = 436 nm
202		0.700				$+7.8 \pm 1.0$				
908 555	$S = CH_{3}OH$	CH ₃ OH				$+10.3 \pm 0.6$				6
606						$+13.0 \pm 1.9$				H
911	OSMU = S					$+11.1 \pm 0.4$ $+11.4 \pm 1.6$				$\lambda_{\rm irr} = 436 \rm nm$ $\lambda_{\rm irr} = 405 \rm nm$
912						$+14.1 \pm 1.0$				$\lambda_{\rm m} = 313 \text{ nm}$
913	$Co(NH_3)_5Br^{2+} \rightarrow Co^{2+} + 5NH_3 + Br^-$	$0^{2}H$	20	2.8	2	$+6.0 \pm 0.6$			306	ll
914 915	[Mo ₆ Cl ₁₄ ^{2−}]* + Ir ^{IV} Cl ₆ ^{2−} →	H ₂ U CH ₃ CN	52 Z0	2.8 2.5	N 4	$+4.8 \pm 0.3$ -8 ± 2			306 314	pH = 4, buffer
	$M_{06}Cl_{14}^{2r} + Ir^{un}Cl_{6}^{3r}$ $[Ru(hpv)_{a}^{2r}]* + Q \rightarrow Ru(hpv)_{a}^{3r} + Q^{-}$	H.O	25	3.0					215.	
916	$Q = Fe(CN)_6^{3-1}$		ì			0.0 ± 0.1			010	0.1 M HCl,
917	$Q = (en)_2 Co(\mu-NH_2, O_2) Co(en)_2^{4+}$					0 to +1.0				$\mu = 0.25 \text{ M}$ 0.05 M H ₂ SO ₄ ,
918	$\mathbf{Q} = (\mathbf{NH}_3)_5 \mathbf{Co}(\mu - \mathbf{O}_2) \mathbf{Co}(\mathbf{NH}_3)_5^{6+}$					$+1 \pm 2$				$\mu = 0.25 \text{ M}$ 0.05 M H ₂ SO ₄ ,
919	$\mathbf{Q} = (\mathrm{CN})_{5}\mathrm{Co}(\mu - \mathrm{O}_{2})\mathrm{Co}(\mathrm{CN})_{5}^{5-1}$					0 to +1.2				$\mu = 0.25 \text{ M}$ 0.1 M HCl,
920						$+0.2 \pm 0.1$				$\mu = 0.25 \text{ M}$ 4.75 M HClO ₄
921	$[Ku(bpy)_{3}^{z+1}]^{*} + Q \rightarrow Ku(bpy)_{3}^{*} + Q^{+}$ $Q = Fe(CN)_{6}^{4}$	H_2O	25	3.0		0.0 ± 0.5			315	pH = 5.2,
922	$\mathbf{Q} = \mathbf{Mo}(\mathbf{CN})_{6}^{4-5}$					$+24.7 \pm 0.6$				$\mu = 0.5 \text{ M}$ 0.1 M HCl,
923	$Q = O_8(CN)_8^{4-}$					+6.8 ± 2.0				$\mu = 0.25 \text{ M}$ 0.1 M HCl,
924	$\mathbf{Q} = \mathrm{IrCl}_{8}^{3-}$					$+1.1 \pm 0.5$				$\mu = 0.25 \text{ M}$ 0.1 M HCl,
925 926	$Q = Eu(aq)^{2+}$ $Q = Fe(H_2O)_6^{2+}$					-11.0 ± 1.0 -0.6 ± 0.6				$\mu = 0.25 \text{ M}$ 0.5 M HCIO ₄ 0.05 M H ₂ SO ₄ ,
927	$[Ru(bpy)_{3}^{2^{+}}]^{*} + Q \rightarrow Ru(bpy)_{3}^{2^{+}} + Q^{*}$ Q = Co(NH ₃) ₅ H ₂ O ³⁺	H_2O	25	3.0		-2.6 ± 0.6			315	$\mu = 0.25 \text{ M}$ 0.05 M H ₂ SO ₄ ,
928 929	trans-Pt(CN) ₄ (N ₃) ₂ ²⁻ \rightarrow Pt(CN) ₄ ²⁻ + 3N ₂	H ₂ O C ₂ H ₅ OH	25 25	2.0 2.0	თ თ	$+8.1 \pm 0.4$ $+14.3 \pm 0.9$			316 316	$\mu = 0.25 \text{ M}$
930	('r(hnv) ₂ 3+	U.H	Photophysical Processes: Lifetime Data	Process	ses: Lifetii	_			Ê	
931 931	$Cr(en)_3^{3+}$	H ₂ O	15 94	5 3 9	>	-0.4 ± 0.2 -0.9 ± 0.2			73	
633 633	Cr(NH ₃) ^{6 34} C-AND 3 34	H ₂ 0	15-34 15-34	212	0 0 , X X 4 4 4	$+4.2 \pm 0.2$ +4.2 ± 0.2			317	pH = 1.8-2.8 pH = 1.8-2.8
935 935	Cr(NU3)6 Cr(NH3)6CN ²⁺	H ₂ O	22 22	2.1	4 4	$+4.2 \pm 0.2$ $+3.4 \pm 0.1$			317 317	pH = 2.0 pH = 3.3
936 937	Cr(NH ₃) ₅ NCS ²⁺ trans-Cr(en) ₂ (NCS) ₂ ⁺	H20 H20	25 25	2.1 2.1	4 X 4 4	$+6.9 \pm 0.1$ $+0.4 \pm 0.1$			317 317	pH = 2.0-3.3 pH = 3.3
938	trans-Cr(en) ₂ (F) ₂ ⁺	$H_{2}O$	25	2.1	3×4	$+1.2 \pm 0.2$			317	11

$pH \sim 1$					9.6 M LiCl 5.0 M urea pH ~ 7	9.6 M LiCl 5.0 M urea	calculated calculated	calculated calculated calculated calculated	
317	75 74 74 74	74 74 74	75 75 74 74	74 74 74 75 73 818	318 318 318 318 317	318 318 318 318 318 318 318 318 318 318	318 318 318 318 318 318 318 318 318	318 318 318 318 76 76	318 318 318 318 318 318 318 318
	+8.1 (a) +10.3 ± 0.4 (a) +14.3 ± 0.5 (a) +5.3 ± 0.2 (a)	$+12.4 \pm 0.5$ (a) $+9.6 \pm 0.4$ (a) $+4.3 \pm 0.4$ (a)	+12.3 (a)						
$+0.1 \pm 0.2$	+5.2 ± 2.0 +4.9 ± 0.3 +8.9 ± 0.4 0.0 ± 0.2	+5.9 ± 0.4 +4.7 ± 0.4 +0.2 ± 0.3	$+3.9 \pm 1.0$ -2.9 ± 1.5 -5.4 ± 0.3 -5.4 ± 0.3 -5.3 ± 0.3	-6.4 ± 0.4 -4.9 ± 0.4 -4.1 ± 0.4 -8.4 ± 2.0 -16 ± 1.0	-1.0 -1.0 -0.4 -0.6 ± 0.1	+2.5 +4.2 +3.1 +6.6 +7.5 +0.0	+3.7 +5.9 +8.9 +4.7 +4.7 -2.2 ± 0.2 -1.0 ± 0.2	-1.7 ± 0.2 +9.7 ± 1.0 +9.1 $\pm .0$ +12.5 ± 1.0 +10.5 +110.5 +11.6	+20 +56 +80 +83 +106 +29 +64
4					00004		ຠ ຠຠຒຒຒ	ى م م)
2.1	3.0 1.2 1.2	$1.2 \\ 1.2 \\ 1.2$	3.0 3.0 1.2 1.2 1.2 1.2	1.2 1.2 3.0 3.0 3.0 3.0	3.0 3.0 3.0 2.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.0 3.0 3.0	
23	25 25 25	25 25 25	ន នុននន	25 55 55 29 59 59	15 15 25 25 25	40 66 70 86 60 80 80 80 80 80 80 80 80 80 80 80 80 80	5 2 2 2 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15 25 25	66 40 37 2 5 3 3 5 6 4 5 3 2 5 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6
H_2O	Me ₂ CO Me ₂ CO CH ₃ CN CH ₃ OH/20%	CH ₃ CN Me ₂ CO CH ₃ OH/20%	CH ₃ CN Me ₂ CO Me ₂ CO MeCN CH ₃ OH/20%	CH ₃ CN CH ₃ CN Me ₂ CO CH ₃ OH/20% CH ₃ OH/20% Me ₂ CO H ₂ O	20000 20000 2000	00000000000000000000000000000000000000	D D D D D D D D D D D D D D D D D D D	CH ₃ CN D ₂ O CH ₃ CN CH ₃ CN CH ₃ CN	17000000000000000000000000000000000000
trans-Cr(cyclam)(CN) ₂ ⁺	$\begin{bmatrix} \text{FeL}_{n} \text{Ls}^{T} \rightarrow [\text{FeL}_{n} \text{Hs}^{T} \\ \text{L} = \text{pyim} (n = 3) \end{bmatrix}$	L = pybim (n = 3)	$\begin{array}{l} L = \mbox{phenmethoxa} \ (n=2) \\ [FeL_n]_{HS}^{2+} \rightarrow [FeL_n]_{LS}^{2+} \\ L = \mbox{pyim} \ (n=3) \end{array}$	$L = pybim (n = 3)$ $L = phenmethoxa (n = 2)$ $Ru(bpy)_{3}^{2+}$			Ru(bpy) ₃ ²⁺ CT → GS	${ m Ru(bpy)_{3}^{2^{*}}}$ ${ m CT} ightarrow { m LF}$	Ru(phen) ₃ *+
939	940 941 942 943	944 945 946	947 948 949 950 951	952 954 955 955 955	959 959 961 962 962	963 965 967 969 969	970 972 974 975 975 975	978 979 980 981 983 983	985 986 988 989 990 991 992

Continued	
Ĩ	
LE	
AB	
F	

ю.	reaction	solvent	T, °C	P, kbar	data	ΔV^{*} , cm ³ mol ⁻¹	cm ³ mol ⁻¹ kbar ⁻¹	cm ³ mol ⁻¹ (method)	rof	action of the
993		DeO	60			10.0	more	(DOIN2HI)	Iai	remarks
994			82			+10.0			318	
005			2 ;			+11.7			318	
000		CH3CN	61	3.0	5	+8.8			76	
066			25	3.0	5	+8.2			76	
166			45	3.0	5	6.6+			97	
998	$Ru(phen)_{3}^{2+}$ CT \rightarrow GS	0°H				00 + 66-			0/	
666						7.0 H 7.7			318	calculated
1000		22				-1.1 ± 0.2			318	calculated
1001		H_2O				$+10.4 \pm 1.0$			318	calculated
1001		D_2O				$+11.5 \pm 1.0$			010	
1002		CH _a CN	15	3.0	ď	-100			210	calculated
1003			95	0.0		5.0.5 TUL			76	
1001			07 :	0.0	0	+8.9			76	
+001			45	3.0	ŝ	+10.5			76	
C001	Kh(NH ₃) ₅ Cl ²⁷	FMA	25	3.0		-0.3 ± 0.4			016	
1006		DMF	25	3.0		$+13 \pm 0.9$			010	
1007		DMSO	25	01		7.0 + 0.7			513	
1008	Rh(ND_)_Cl2+		, L		4				319	
1000	DLAND V D-2+		07	2.8	9	-3.5 ± 1.1			47	10^{-3} M DCI
6001	Vu(IND3)6BT	D_2O	25	2.0	9	$+4.1 \pm 0.6$			47	10-3 M DCI
1010	cis-Rh(bpy) ₂ Cl ₂ ⁺	H_2O	23	3.3	7-10	-2.2 ± 0.3			116	
1011		FMA	23	3.3	7-10	+0.2 + 0.9			110	
1012		CH _o OH	23	6	7-10	70 - 70+			110	
1013			60						311	
FIOL	Oc/h) 2+		61.0	3.3 2	01-1	$+0.9 \pm 0.2$			311	
1011	Us(upy)3	CHICH	¢7.	3.0	5	-0.2			76	
6101		CH ₃ CN	45	3.0	5	-1.9			76	
1016	$Ir(bpy)_2Cl_2^+$	DMF	25	3.0		$+4.0 \pm 0.9$			000	
1017	Ir(Me,phen),Cl,+	DMF	25	3.0		7.0 - 0.7		-4.2 ± 0.0 (8)	320	
	2 2		2	0.0		T.U I I G.UT		-4.1 ± 0.8 (a)	320	
			Photop	iysical Proc	cesses: Noni	Photophysical Processes: Nonradiative Deactivation	tion			
1018	$Cr(bpy)_{3}^{2+}$	$0_2^{-}H$	22	2.3		-1.6 ± 0.2			100	
1019	Ni(dpe)Cl ₂	CH ₂ CI ₂		1.2	11	-9.6 ± 0.5			400 100	
1020		C.H.Br		1 9	1 =	-19 - 9			321	
1021	Ni(dne)Br.	CH.CI.		10	;;	7 7 7 71-			321	
1025				4 q	1;	-3.1 ± 0.4			321	
1000				1.2	11	-11 ± 2			321	
1023	INI(VPD)/Br ₂	CH2CI2		1.2	11	-8.3 ± 0.4			391	
1024		C_2H_5Br		1.2	11	-10 ± 2			106	
1025	$Rh(NH_3)_5Cl^{2+}$	FMA	25	2.0		+0.9 + 0.5			170	
1026		DMF	95	0.6					918	calculated
1027		DMG	6	- - -		TU. F U.3			319	calculated
1098	Bh(NID) Cil2+		20	1. 0		- 1 = 1 -			319	calculated
0701	DL ATT 3501	020	97	2.0		-2.6 ± 1.0			47	calculated
670T	KD(IND ₃) ₅ Br ²	D_2O	25	2.0		$+2.5 \pm 1.2$			47	calculated
									F	carculated

ažine); gly, glycinate; glyco, glycolate; Hahx, acetohydroxamic acid; Hame, 2-aminoethanol; hfac, hexafluoroacti, Hipt, 4-isopropyltropolone; HTR, heptatrienone; hxsh, 18-his[(2-pyridylmethylene)amino]-3,6-diazaoctane; i.a.S, inversion about S, i-dtma, N/N-bis(2-aminoethyl)glycinate; imid, imidazole; isoq, isoquinoline; HTR, heptatrienone; Na, 14.7,10-tetraazacyclopentadecame; Na, N-methyl-5,10,15,20-tetraphenylporphine; mur, murexide; Nq', 14,7,10-tetraazacyclotetradecame; Na, 14.7,10-tetraazacyclopentadecame; Na, 1,10-tetraazacycloteradecame; na, nitrilotriacetate; ox, oxalate; pada, pyridyl-2-azo 4-dimethylanline; pan, 1-(2-pyridylazo)-2-mphthol (5, propylene carbonate; pd, 2,6-pyridihedicarboxylate; PES, polyethylenesulfonate; Pr, propyl; PSS, poly-(5, tropylene); pyridine; pypridine; pypridine; propertyl)benzimidazole; pyrin, 2,2'6',2''-terpyridine; pr, propylenediamine; Pr, propyl; PSS, poly-(3,4-dimethylphenyl)iminolphenyl-2-pyridyl)benzimidazole; pyrin, 2-(2-pyridyl)imidazole; pyritoline; pr, propyl; PSS, poly-(3,4-dimethylphenyl)iminolphenyl-2-pyridylhoate; press, pyrazine; terpy, 2,2'6,6-tetramethyl-1-piperidinyloxyl; tmpp, meso-tetrakis(p-3.2,3-tet, N/V-bis(3-aminopropyl); tmc, 1,4,8,11-tetramethylporphine; tm, trimethylenediamine; tpps, meso-tetrakis(p-sulfonate; pz, pyrazine; pzc, pyrazi dab, biacetyibis(phenyimme); DCTA, 1,2-diaminocyclohexanetetraacetate; DTHP, 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3,1]heptadeca-1(17),2,11,13,15-pentaene; dien, di-ethylenetramine; dme, dimethylghyoxime; dpe, 1,2-bis(diphenylphosphino)ethane; DTC, dithiocarbamate; dtcd, meso-5,12-dimethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene; dto, a e distriction and the distribution of 3.6-dithiaoctane; edda, ethylenediaminediacetate; edta, ethylenediaminetetraacetate; en, ethylenediamine; Et, ethyl; fz, ferrozine (3-(2-pyridyl)-5,6-bis(4-sulfophenyl)-1,2,4-tri-

TABLE II. ΔV^* for Solvent Exchange on MS_6^{2+a}

				-	•	
M ²⁺	V	Mn	Fe	Co	Ni	Cu
r_i , pm	79	83	78	74	69	73
ed	t_{2g}^{3}	$t_{2g}^{3}e_{g}^{2}$	$t_{2g}^{4}e_{g}^{2}$	$t_{2g}^{5}e_{g}^{2}$	$t_{2g}^{6}e_{g}^{2}$	$t_{2g}^{6}e_{g}^{3}$
$S = H_2O$	-4.1	-5.4	+3.8	+6.1	+7.2	
$S = CH_3OH$		-5.0	+0.4	+8.9	+11.4	+8.3
$S = CH_3CN$		-7.0	+3.0	+8.1	+8.5	
S = DMF		+2.0	+8.5	+6.7	+9.1	
$S = NH_3$					+5.9	
^a From ref 16.	Data	in cm ³ r	nol ⁻¹ .			

change data were obtained by employing NMR techniques and are restricted to diamagnetic metal ions. For trivalent octahedral metal ions, ΔV^* varies from +22 for Al³⁺ and Ga³⁺ to -23 cm³ mol⁻¹ for Sc³⁺ and In^{3+} . The large positive values are typical for a limiting dissociative activation mode and the large negative values for an associative activation mode. The smaller cations tend to expel a solvent molecule, whereas the larger cations tend to host a seventh molecule in their coordination sphere. Theoretical semiempirical calculations by Swaddle^{184,325–327} suggest ΔV^* values for Ga³⁺ of -13.6 and +13.1 cm³ mol⁻¹ for a limiting A and D mechanism, respectively. Other trivalent metal ions give significantly smaller absolute values of ΔV^* , for instance Co^{3+} , Cr^{3+} , and V^{3+} , and an I_a or I_d mechanism becomes plausible. Similar trends are observed in different solvents and small mechanistic changes from I_a to A or I_d to D, and vice versa, may occur for a given metal ion in different solvents. The spectrum of ΔV^* data for MS_6^{3+} systems demonstrates the sensitivity of this parameter to the size of the central metal ion and the coordinated solvent/ligand molecules. For Cr^{3+} , Fe³⁺, and Ga³⁺ in water, the conjugate base species $M(H_2O)_5OH^{2+}$ (entries 21, 32, and 69) exhibit dissociative behavior, most probably I_d , which represents a changeover in mechanism for the hexaaqua species of Cr³⁺ and Fe³⁺, which react associatively, most probably I_a . A similar behavior is observed for Fe^{3+} in methanol (entry 35), where only exchange of the methoxy species occurs. This mechanistic changeover is probably due to the strong-electron-donating capability of HO⁻ or MeO⁻, causing a weakening of the remaining metalsolvent bonds, most probably the trans solvent molecule.

Volumes of activation for solvent exchange of octahedral divalent metal ions are presently available for almost every member of the first-row transition-metal elements. A summary of the available data is presented in Table II (taken from ref 16), from which it follows that a gradual changeover in mechanism is occurring along the series. The earlier members are associatively activated and the later members dissociatively activated. In terms of the mean limiting value of 13.1 cm^3 mol⁻¹ calculated from Swaddle's model for a limiting D (or A) mechanism, the data in Table II suggest the operation of interchange processes varying from I_a for $\dot{V^{2+}}$ and Mn^{2+} to I_d for Co^{2+} and Ni^{2+} . The data for Fe^{2+} could be considered a borderline case, and a pure interchange mechanism (I) has been suggested. These trends are especially clear for H₂O, CH₃OH, and CH₃-CN as solvents. The results for DMF are significantly more positive for Mn^{2+} and Fe^{2+} , and it was suggested that steric hindrance may account for a more dissociatively activated transition state.¹⁰⁰ The good agreement between the ΔV^* data reported for DMF exchange on Mn^{2+} by two independent groups is quite

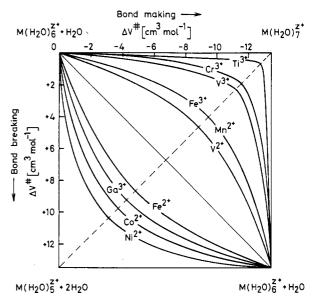


Figure 8. Bond-making and bond-breaking contributions to the volumes of activation for water exchange on $M(H_2O)_6^{z^+,324}$

remarkable (entries 28 and 29) and demonstrates the accuracy with which such data can be determined. Surely not only the size of the metal ion but also that of the coordinated solvent molecules will affect the intimate nature of the substitution process.

It has been suggested that the interpretation of the above data may be complicated by important changes in the bond lengths between the central metal ion and the nonexchanging ligands.³²⁸ It was shown that this contribution is small and can be neglected for divalent and trivalent metal ions.^{325,329} The systematic trend observed along the first-row transition-metal series can be visualized with the aid of a two-dimensional More O'Ferral plot^{14,16} presented in Figure 8. The sum of the coordinates of each point along a trajectory represents the change in volume to reach that point. The ΔV^* value is obtained at the intersection with the dashed line. The limiting $|\Delta V^*|$ value of 13.1 cm³ mol⁻¹, as predicted by Swaddle's model, was chosen in Figure 8. The observed changeover can be explained in terms of the cation size and the electron configuration in the valence shell of the metal ion. For a σ -bonded octahedral complex, the t_{2g} orbitals are nonbonding, whereas the eg orbitals are antibonding. The gradual filling of the t_{2g} orbitals will electrostatically disfavor the approach of a seventh ligand and therefore decrease the ease and extent of bond making. Similarly, an increased occupancy of the e_{σ} orbitals will enhance bond breaking. These effects along with the steric effects mentioned above can account for the sequence of the ΔV^* data in Table II.

The determination of \bar{V} for complexes of the type $M(H_2O)_6^{2+}$ and $M(NH_3)_5H_2O^{3+}$ has allowed the evaluation of the partial molar volume of the transition state, \bar{V}_* , for the solvent-exchange process through eq 35.^{119,184,326} The calculations show rather surprisingly

$$\bar{V}_* = \bar{V} + \Delta V^* \tag{35}$$

that \bar{V}_* is independent of the size of the central metal ion, which means that the lengthening of the metalligand bonds at the transition state with respect to the reactant state increases with decreasing ionic radius. This lengthening mainly affects the exchanging solvent molecules and implies that for a large cation the transition state is more compact than for a small cation, where the exchanging molecules are further away from the central atom.

Quite a number of studies have been performed on ligand-exchange reactions of metal halide adducts.¹¹⁷ The kinetic facts available suggest the operation of a D mechanism when L = RCN, R_2O , or R_3PO and of an I_a mechanism when L = Me₂S, Me₂Se, and Me₂Te; i.e., there is a ligand-controlled crossover in mechanism. Once again electrostriction effects can be neglected for these reactions, and the reported ΔV^{\dagger} mainly represents the intrinsic volume changes. The large positive ΔV^* values for the first set of ligands and the large negative ΔV^* values for the second set of ligands (see Table I. entries 73-77, 90-95, and 107-115) clearly confirm the ligand-controlled crossover from dissociative to associative. ΔV^* data for solvent exchange on five-coordinate complexes of the type $M(Me_6(tren))S^{2+}$ (S = DMF, DEF) and M(tmc)CH₃CN²⁺ range between -9.6 and $+6.5 \text{ cm}^3 \text{ mol}^{-1}$, depending on the central metal ion; they are typical of I_a and I_d processes, respectively.

A few results have become available for solvent- and ligand-exchange reactions of four-coordinate complexes in recent years. ΔV^{\dagger} for the exchange of PPh₃ on the labile pseudotetrahedral complex $Co(PPh_3)_2Br_2$ (entry 57) is significantly negative, demonstrating the associative nature $(I_a \text{ or } A)$ of the process. Water exchange of $Pd(H_2O)_4^{2+}$ and $Pt(H_2O)_4^{2+}$ exhibits small negative ΔV^* values, indicating an I_a type of mechanism. However, other kinetic parameters suggest that squareplanar substitution reactions usually proceed according to an A mechanism. The formation of the metal-solvent bond may well be accompanied by the lengthening of the two axial metal-solvent bonds during the formation of a trigonal-bipyramidal transition state, which will decrease the overall volume collapse associated with bond formation and account for the relatively small negative ΔV^* data. In a similar way, the ΔV^* data for exchange of DMS on Pd(DMS)₂Cl₂ (entries 82-85) in different solvents can be interpreted in terms of either an I_a or A mechanism.¹²¹ If the Kirkwood parameter $q_{\rm p}$ is used to describe solvent electrostriction, a plot of ΔV^* versus q_p results in an intercept (ΔV^*_{intr}) of -5.9 cm³ mol⁻¹, which could be a characteristic number for an associative substitution reaction of square-planar complexes (see further discussion and ref 35).

Data for DMF exchange on $Ln(DMF)_8^{3+}$ suggest a gradual changeover from I_d to D along the series of elements.⁶⁸ The positive ΔV^* values are thought to arise from the sum of two opposite effects: a volume decrease due to penetration of the ninth ligand into the coordination sphere and a dominant volume increase due to lengthening of the leaving and nonexchanging ligand bonds. Recently published data¹²⁵ for water exchange on $Ln(H_2O)_9^{3+}$ clearly underline the associative nature of the exchange process in the case of this less bulky solvent. The mechanistic trends described in this section are of fundamental importance to the interpretation of the ΔV^* data for ligand substitution reactions in general.

C. Ligand Substitution Reactions

In this section we discuss the data reported for nondegenerate ligand substitution reactions in which the product species differ from the reactant species, i.e., a nonsymmetrical substitution process (entries 116–675). It follows that the largest number of data were reported in this area, demonstrating the importance of ligand substitution processes in the understanding of chemical reactions. Various types of ligand substitution reactions may occur, and the data in Table I for a particular metal ion in a particular oxidation state have been ordered as follows: complex formation reactions, aquation or solvolysis, base hydrolysis, metal ion catalyzed aquation, and general ligand for ligand substitution processes.

The fundamental aspects of ligand substitution reactions were treated in the previous section, and the mechanisms outlined in Figures 6 and 7 will be adopted in this section. Mechanistic similarities are expected to occur for solvent-exchange and complex formation reactions involving these solvated metal ions. Due to the microscopic reversibility of complex formation reactions, the reverse aquation or solvolysis processes are expected to pass through the same transition state. The data discussed in the previous section clearly demonstrate the occurrence of mechanistic changeovers along particular series of metal complexes and ligands. A logical question is whether similar trends will show up in complex formation reactions of these solvated metal ions.

Complex Formation Reactions

In general, complex formation reactions, i.e., anation when the solvent is water, of transition-metal ions follow an interchange mechanism in which rapid precursor (ion pair) formation is followed by rate-determining ligand interchange, as outlined in (36). Under pseu-

$$MS_6 + L \stackrel{K}{\longleftrightarrow} \{MS_6 \cdot L\} \stackrel{k}{\longrightarrow} MS_x L + (6 - x)S$$
 (36)

do-first-order conditions, i.e., excess of L, the first-order rate constant can be expressed by (37). When L is

$$k_{\text{obsd}} = kK[L]/\{1 + K[L]\}$$
 (37)

neutral, K is expected to be small and (37) reduces to $k_{obsd} = kK[L]$, the normal second-order behavior expected for such a substitution process. Important, however, is the fact that the second-order rate constant kK is a composite quantity with the result that $\Delta V^* =$ $\Delta \overline{V}(K) + \Delta \overline{V}^*(k)$. This means that the experimentally determined volume of activation must be corrected for the volume change arising from the precursor (ion pair) formation step in order to obtain the value for the actual interchange step. This is not always possible since in many cases K and k cannot be separated kinetically. and $\Delta \tilde{V}(K)$ must be predicted theoretically by using the Fuoss theory. A summary of the data available for complex formation reactions of the divalent first-row transition-metal elements in Table III clearly demonstrates that complex formation reactions exhibit the same trend in ΔV^* as do the corresponding water-exchange reactions. Similar results are observed for such processes in other solvents, which supports the generality of a mechanistic changeover along the first-row transition elements from I_a to I_d . A typical volume profile for a complex formation reaction of Mn²⁺, demonstrating the I_a nature of the process, is given in Figure 9. In this case, $\Delta \overline{V}(K)$ is assumed to be close to zero since the entering ligand is neutral. An example of a

TABLE III. ΔV^* for the Interchange of Neutral and Uninegative Ligands on M^{2+} Ions in Water^a

muchanic n	8						
ligand	V ²⁺	Mn ²⁺	Fe ²⁺	Co ² +	Ni ²⁺	Cu ²⁺	Zn ²⁺
H ₂ O	-4.1	-5.4	+3.8	+6.1	+7.2		
NH ₃				+4.8	+6.0		
imidazole					+11.0		
isoquinoline					+7.4		
pada				+7.9	+7.1		
bpy		-1.2		+5.9	+5.3		
terpy		-3.4	+3.6	+4.1	+5.6		
SCN-	~5.3						
glycinate(1-)				+5	+7	+9	+4
murexide(1-)					+8.7		
^a From ref 16.	Data	in cm ³	mol ⁻¹ .				

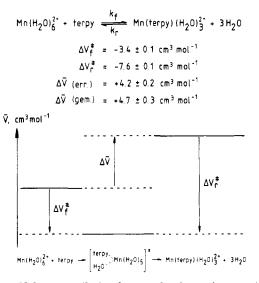
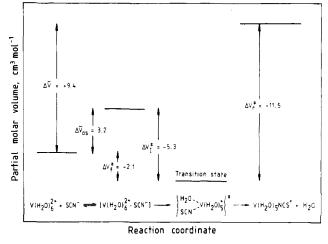


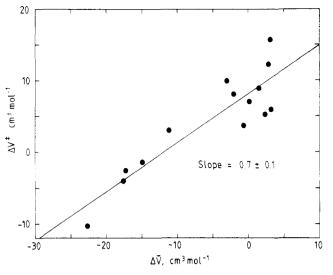
Figure 9. Volume profile for the complex formation reaction of Mn(II).¹⁴²

volume profile where this is not the case is presented in Figure 10.

A mechanistic changeover has also been observed for the complex formation reactions of Fe^{3+} and $FeOH^{2+}$. It parallels that reported for the solvent-exchange reactions. In comparison, ΔV^* for complex formation of Fe^{3+} with neutral ligands should be more negative than for complexation by anionic ligands. This is indeed the case for ligands such as Hipt and Hahx, for which ΔV^* is significantly more negative than for SCN⁻, Cl⁻, and Br⁻. Changing to other solvents sometimes results in a change in sign of ΔV^* for complex formation. This may be explained in terms of the relative bulkiness of the solvent molecules, in terms of which the metalsolvent bonds may have to lengthen in order to accommodate a larger entering ligand. ΔV^* therefore increases in the order $H_2O < DMF < DMSO$ in which steric crowding increases. It is, therefore, reasonable to expect a mechanistic changeover along the series of solvents studied from I_a to I_d for the more bulky ones.

In many cases the interpretation of ΔV^* data for complex formation reactions is complicated by the fact that electrostriction effects, arising from charge neutralization, may dominate the intrinsic volume changes. This is especially noticed for anation reactions of trivalent metal complexes of the type $M^{III}L_5H_2O$, where $L = NH_3$, CN^- , and Cl^- and M = Co(III), Rh(III), Cr-(III), and Ru(III). In two cases (entries 125 and 523) the anation process is accompanied by a negative ΔV^* , and since both reactions involve neutralization of charge, the actual intrinsic component will be more




Figure 10. Volume profile for the formation of $V(H_2O)_5NCS^{+.52}$

negative than these values. This then suggests an I. mechanism for the Cr(III) system and a limiting A mechanism for the Ru(III) system. The anation reactions of $Co(CN)_5H_2O^{2-}$ (entries 358-363) have a longstanding reputation of being typical of a limiting D mechanism. However, recent studies³³⁰ have indicated that the original evidence supporting a D mechanism is in error and that an I_d mechanism is operative. The values of ΔV^* are such that they do not allow a distinct differentiation between these possibilities, but they do underline the dissociative nature of the process. Evidence in favor of a limiting D mechanism was also reported for anation reactions of $Rh(H_2O)_6^{3+}$, Rh- $(H_2O)_5Cl^{2+}$, cis-RhCl₄ $(H_2O)_2^{-}$, and RhCl₅ $(H_2O)^{2-}$ (entries 530 and 531). The large positive values of ΔV^* were ascribed to the dissociation of coordinated water to produce a five-coordinate intermediate. In contrast, anation of $Rh(NH_3)_5H_2O^{3+}$ by chloride proceeds according to an interchange mechanism, for which differentiation between I_a and I_d is difficult on the basis of the ΔV^* value (entry 529). Similar results are reported for the other pentaammine complexes referred to above, for which a mechanistic assignment based on ΔV^* is also difficult.

The results for anation reactions of porphyrin complexes of Co(III), Rh(III), and Cr(III) indicate that ΔV^* is large and positive in all cases (entries 127, 270–272, 532, and 533). The data for the Co(III) complexes are in line with a limiting D mechanism, whereas those for Rh(III) and Cr(III) are somewhat smaller in magnitude and could point to an I_d mechanism. The trend clearly demonstrates the labilization effect of the porphyrin ligands in these complexes.

The interpretation of ΔV^* data for anation reactions is in many cases limited by our inability to estimate $\Delta \overline{V}(K)$ accurately. The anation reactions are in some cases slow and must be studied at high-temperature and high-concentration conditions, where K tends to be small and $\Delta \overline{V}(K)$ is difficult to determine. In addition, ion-pair formation with inert electrolyte ions, added to control the ionic strength of the medium, may also affect the interpretation of the data. It follows that differentiation between I_a and I_d mechanisms, especially for anation reactions involving oppositely charged reactants where significant ion-pair formation is present, remains speculative and must be treated with care.

Anation reactions of square-planar complexes of Pd-(II) (entries 550–565) are generally accepted to proceed

Figure 11. Plot of ΔV^* versus $\Delta \tilde{V}$ for the solvolysis of a series of Ni(II) complexes.³³¹

according to an associative mechanism, typical for such systems. Anation of $Pd(L)H_2O^{2+}$ exhibits in most cases negative values for ΔV^* , except for anation by the very bulky ligands such as adenosine, cytidine, thymidine, and uridine, where ΔV^{\dagger} is approximately zero. For the anation by the anionic halides and azide, charge neutralization during bond formation will result in a positive contribution from ΔV^*_{solv} , which will partly counterbalance the negative ΔV^*_{intr} contribution arising from bond formation. The steric hindrance on L, the size of the entering ligand, and the overlap of the molecular orbitals in the transition state will determine the magnitude of ΔV^*_{intr} and therefore ΔV^* . There seems to be a good correlation between the magnitude of ΔV^* and the size of the entering group down the series Cl⁻, Br⁻, I⁻, and N_3^- , up to the point where the overlap with very large ligands (entries 552-555) becomes negligible. For the anation of $Pd(H_2O)_4^{2+}$ by DMSO (entries 550 and 551), the reported ΔV^* should only represent ΔV^*_{intr} , such that these data confirm a limiting A mechanism.

Aquation and Solvolysis Reactions

The majority of high-pressure data deal with the reverse reactions of the processes discussed in the previous section, and only in a few cases were such reactions investigated in solvents other than water. We first consider the data for the spontaneous aquation reactions of complexes of divalent first-row transition-metal ions, i.e., the reverse of the reactions reported in Table II. For neutral leaving groups, ΔV^* is in general negative for V(II) and Mn(II), compared to positive for the other members of the series. In the case of anionic leaving groups, ΔV^* is in general more negative due to partial charge creation during bond cleavage in the transition state. The change in sign of ΔV^* fits the trend discussed for the complex formation reactions and indicates a changeover from I_a to I_d along the series, expected on the basis of microscopic reversibility of ligand substitution processes. Figures 9 and 10 illustrate that the volume of the transition state is significantly smaller than that of the reactant and product species, underlining the associative nature of reactions in these cases. The majority of data for the aquation/solvolysis of Ni(II) complexes (entries 470–480) exhibit positive volumes of activation, in agreement with the data reported for the complex formation reactions (entries 442–469). The transition state has a significantly larger volume than either the reactant or product states. The slightly negative ΔV^* values found for anionic leaving groups must be due to negative contributions from ΔV^*_{solv} arising from charge creation during bond cleavage. Notwithstanding these differences, the available data for the solvolysis of Ni(II) complexes exhibit a good correlation between ΔV^* and $\Delta \bar{V}$, with a slope of 0.7 ± 0.1 (see Figure 11), which is in line with the concept of an I_d mechanism since bond breakage is considerably advanced in the transition state.

The aquation reactions of amine complexes of Cr(III) and Co(III) (entries 128–152 and 273–372) have received considerable attention from high-pressure kineticists. The mechanistic assignments cover the whole spectrum of D, I_d , I_a , and A, which has led to quite some controversy in the literature. For instance, aquation reactions of the type in (38) all exhibit negative volumes

$$Cr(NH_3)_5X^{2+} + H_2O \rightarrow Cr(NH_3)_5H_2O^{3+} + X^-$$
 (38)

of activation (including data reported in ref 1); but these can be interpreted either in terms of an associative process (due to bond formation) or in terms of a dissociative process during which Cr-X bond cleavage is accompanied by a strong increase in electrostriction due to charge creation. A plot of ΔV^* versus $\Delta \bar{V}^{332}$ results in a slope of 0.6, from which it was concluded that bond stretching is half advanced in the transition state. However, this can be the case for I_a as well as I_d , demonstrating the difficulty of interpretation. Unambiguous mechanistic information can be obtained for such reactions only when the leaving group is neutral so that no major solvational changes occur. Data reported recently¹³² for the aquation of a series of complexes of the type $Cr(NH_3)_5 X^{3+}$ (entries 128–132) demonstrate that ΔV^* is throughout negative, in line with an I_a mechanism.

An increase in steric hindrance (entry 138) results in a significantly more positive ΔV^* , in line with an increasing importance of bond breakage and a possible changeover from I_a to I_d. Even more positive ΔV^* values are reported for the aquation of $Cr(NCS)_6^{3-}$ and $Cr(tpps)(H_2O)NCS^{4-}$, demonstrating the dissociative nature of these reactions, most probably I_d. The ΔV^* data reported for the aquation of the bis(oxalato) and bis(malonato) complexes of Cr(III) are too difficult to interpret, due to various contributions arising from ring opening and charge creation that may influence ΔV^* .

Aquation reactions of the type outlined in (39) usually exhibit negative ΔV^* values when the leaving group is anionic (see data reported in ref 1). Again the negative

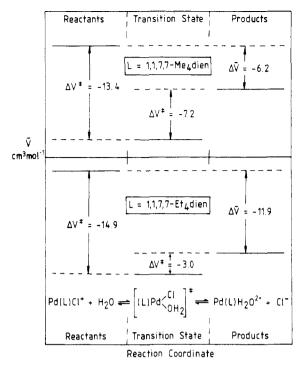
$$C_0(NH_3)_5 X^{(3-n)+} + H_2 O \rightarrow C_0(NH_3)_5 H_2 O^{3+} + X^{n-}$$
(39)

contribution of ΔV^*_{solv} arising from the charge creation during Co-X bond breakage is suggested to overrule ΔV^*_{intr} . A plot of ΔV^* versus $\Delta \overline{V}$ is linear with unit slope,³³¹ indicating that the leaving group must be almost fully dissociated in the transition state, which is in line with an I_d mechanism. Even more convincing is the observation that ΔV^* is small and positive for a series of complexes where X is a neutral ligand (entries 273–283), for which ΔV^* will mainly represent ΔV^*_{intr} and so underlines the validity of an I_d mechanism. An increase in steric hindrance on the amine ligand (entries 293–297) results in a significant increase in ΔV^* , demonstrating a more dissociative nature of the process.

Data for the pentaammine complexes have been used to perform some quantitative calculations concerning the partial molar volumes of intermediate and transition-state species.^{178,181,183,333} Detailed analyses of the data have led to the suggestion that the partial molar volumes of $Co(NH_3)_5^{3+}$ and $Co(NH_3)_6^{3+}$ are either equal or differ by 17–20 cm³ mol⁻¹. This aspect is presently still unsettled, and more work is required before a definite conclusion regarding the partial molar volumes of 5- and 6-coordinate species can be reached.

At this point we should refer to Asano's approach³⁶ to obtain ΔV^*_{intr} of aquation reactions of Co(III) and Cr(III) complexes in which large solvational changes affect the sign and value of ΔV^* . His calculations result in ΔV^*_{intr} values of +0.2 ($X^{n-} = NO_3^-$), +4.6 ($X^{n-} = Cl^-$), +4.0 ($X^{n-} = Br^-$), and +5.4 ($X^{n-} = SO_4^{2-}$) for the aquation of Co(NH₃)₅X⁽³⁻ⁿ⁾⁺ compared to values of -4.9 ($X^{n-} = Cl^-$), -4.1 ($X^{n-} = Br^-$), and -4.2 ($X^{n-} = I^-$) cm³ mol⁻¹ for the aquation of Cr(NH₃)₅X⁽³⁻ⁿ⁾⁺.

A large proportion of the data in Table I concern aquation reactions of trans- and cis-Co(L)XY, where L represents a wide range of mono- and multidentate (mainly amine) ligands and X and Y are Cl⁻, Br⁻, I⁻, N₃⁻, CN⁻, NO₂⁻, etc. For many of the systems, ΔV^* has a small (positive or negative) value, whereas $\Delta \overline{V}$ is substantially negative in all cases. Despite a few exceptions, most of these data can be interpreted in terms of a dissociatively activated (I_d or D) process in which the positive intrinsic contribution is partially or totally canceled by the negative solvational contribution arising form charge creation during bond cleavage. The large difference between ΔV^{\dagger} and $\Delta \overline{V}$ indicates that we are dealing with an "early" transition state followed by a volume collapse during bond formation with the entering solvent molecule. The mean value of $\Delta V^* - \Delta \bar{V}$ is 12 ± 3 cm³ mol⁻¹, in good agreement with that expected for the entrance of a water molecule into the coordination sphere. The fact that these complexes aquate with retention requires that the entering solvent molecule be preassociated to some extent, supporting an I_d mechanism.


The aquation reactions of Co(III) oxalato and carbonato complexes proceed via the formation of ringopened species followed by aquation or decarboxylation, respectively. The corresponding ΔV^* data can be interpreted in terms of volume increases during ring opening, accompanied by volume decreases due to an increase in electrostriction around the free end of the ligand. This also accounts for the more negative ΔV^* of the spontaneous (water assisted) ring-opening process than of the acid-catalyzed path for anionic carbonato complexes; the ring-opened species is a bicarbonate complex in the acid-catalyzed path, and no significant solvent electrostriction occurs around this free end of the ligand.

The aquation reactions of Fe(II) complexes all exhibit large positive ΔV^* values that underline the dissociative nature of the process. In a similar way, the substantially positive values reported for the aquation of RhCl₆³⁻ and RhCl₅H₂O²⁻ are clearly in line with a limiting D mechanism. In contrast to these extreme positive values found for the aquation of octahedral complexes, ΔV^* for the aquation/solvolysis reactions of square-planar Pd(II) and Pt(II) complexes are significantly negative, in line with an associative mechanism (entries 566–616 and 635–653). Very significant is the observation that an increase in steric hindrance on L for reaction 40 is

$$Pd(L)X^{(2-n)+} + H_2O \rightarrow Pd(L)H_2O^{2+} + X^{n-}$$
(40)

not accompanied by a change in ΔV^* for a particular leaving group (X^{n-}) . Although the aquation rate constant decreases by 6 orders of magnitude with increasing steric hindrance, the constancy of ΔV^* underlines the validity of an associative process throughout the series. The data for the more hindered Et_4 -(dien) and MeEt₄(dien) complexes do exhibit a special dependence on the nature of the leaving group, viz., significantly more positive ΔV^* values for neutral leaving group such as NH_3 and py. It is possible that this may indicate a change in mechanism, since a dissociative reaction mode could be favored under certain circumstances for these highly sterically crowded complexes. Alternatively, the observed variation in ΔV^* of -3 to -13 cm³ mol⁻¹ could indicate a gradual changeover in mechanism from A to I_a . The solvolysis reaction of $Pd(H_2O)_3DMSO^{2+}$ and the solvent-exchange reactions of $Pt(H_2O)_4^{2+}$ and $Pd(H_2O)_4^{2+}$ also exhibit small negative ΔV^{\dagger} values, in close agreement with those reported for the NH₃ and py aquation reactions. It follows that such small values can surely not result from a dissociative component due to steric hindrance. It is more likely that a ΔV^* of ca. $-3 \text{ cm}^3 \text{ mol}^{-1}$ probably represents the pure intrinsic component for the associative entrance of a water molecule into the coordination sphere of a square-planar complex. The additional negative contribution toward ΔV^* when the leaving group is anionic may result from changes in dipole interaction when the square-planar complex is converted to a trigonal-bipyramidal transition state accompanied by the lengthening of the axial bonds and an increase in electrostriction. These effects may also partly account for the small magnitude of ΔV^{\dagger} (for neutral leaving groups), since lengthening of the axial bond lengths will increase the volume of the five-coordinate species, which will partially balance the volume decrease due to bond formation. With the available ΔV^* for both anation and the reverse aquation reactions, it is possible to construct a relative reaction volume profile for the overall process. Two representative examples are given in Figure 12, from which it follows that the transition state has a significantly lower partial molar volume than either the reactant or product species, demonstrating the associative character of the substitution process.

Aquation reactions of Pt(II) amine complexes are all characterized by ΔV^* values of ca. -9.5 cm³ mol⁻¹, which is in close agreement with those reported for the corresponding Pd(II) complexes, i.e., where the leaving group is anionic. Massive steric hindrance was generally thought to force the substitution mode of such complexes into a dissociative one. In this respect it was reported in the literature that solvolysis reactions of cis-Pt(PEt₃)₂(R)Br, where R = Ph, p-MeC₆H₄, o-MeC₆H₄, and o-EtC₆H₄, proceed via an associative mechanism, but the more crowded complex with R = 2,4,6-Me₃C₆H₂ follows a dissociative mechanism (see ref 247 for more details). The pressure dependence of this reaction (entries 647-653), however, suggests the asso-

Figure 12. Volume profiles for the reaction $Pd(L)Cl^+ + H_2O \Longrightarrow Pd(L)H_2O^{2+} + Cl^-$.

ciative nature of the $process^{247,248}$ and that a similar transition state is reached from either the cis or the trans complex.

Base-Catalyzed Aquation

The spontaneous aquation reactions discussed in the previous section are usually very slow for the inert complexes of Co(III), Cr(III), and Rh(III). In contrast, these reactions are orders of magnitude faster in basic medium and hence are generally referred to as basecatalyzed aquation or base hydrolysis. The increased reactivity is ascribed to the formation of a labile conjugate base (CB) species.

Base hydrolysis of $\operatorname{Cr}_2\operatorname{O}_7^{2^-}$ (entries 121–124) is characterized by strongly negative volumes of activation, which is ascribed to the volume contraction arising from bond formation and an increase in electrostriction due to charge concentration on the chromate end on going to the transition state. For the reaction with OH⁻, the mechanism can be outlined as in (41). During the

$$Cr_{2}O_{7}^{2-} + OH^{-} \rightarrow [CrO_{4} - -CrO_{3}OH^{3-}]^{*} \rightarrow CrO_{4}^{2-} + HCrO_{4}^{-}$$
(41)

dissociation of the transition state a volume increase of ca. 16 cm³ mol⁻¹ occurs. Base hydrolysis of Fe(II) complexes (entries 227-247) is usually characterized by large positive values of ΔV^* that vary significantly with the nature and composition of the solvent. The sign and magnitude of ΔV^* underline the dissociative nature of the process. A more detailed interpretation of these data is restricted by insufficient information on the nature of the rate-determining step and of the associated reaction products.

Base hydrolysis reactions of Co(III) amine complexes have received considerable attention in recent years (entries 373–399), with special focus on the Co- $(NH_3)_5X^{(3-n)+}$ and Co $(NH_3)_4(NH_2X)Cl^{2+}$ systems. The base hydrolysis reactions of the pentaamminecobalt(III)

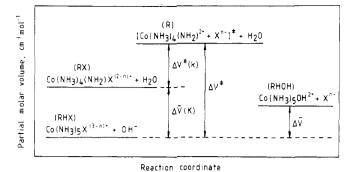


Figure 13. Volume profile for the base hydrolysis of Co- $(NH_3)_5 X^{(3-n)+}$ according to a $S_N 1$ cb mechanism.¹⁹⁵

complexes are generally accepted to react according to a S_N 1cb mechanism as outlined in (42).³³⁴ In the

$$Co(NH_3)_5 X^{(3-n)+} + OH^- \stackrel{\underline{K}}{\underset{Co(NH_3)_4(NH_2)}{\longleftarrow}} CO(NH_3)_4 (NH_2) X^{(2-n)+} + H_2O$$

$$\operatorname{Co}(\mathrm{NH}_3)_4(\mathrm{NH}_2)\mathrm{X}^{(2-n)+} \xrightarrow{k} \operatorname{Co}(\mathrm{NH}_3)_4\mathrm{NH}_2^{2+} + \mathrm{X}^{n-1}$$

$$\operatorname{Co}(\mathrm{NH}_3)_4 \mathrm{NH}_2^{2+} + \mathrm{H}_2 \mathrm{O} \xrightarrow{\text{fast}} \mathrm{Co}(\mathrm{NH}_3)_5 \mathrm{OH}^{2+} \qquad (42)$$

rate-determining step the conjugate base species dissociates to produce the five-coordinate Co(NH₂)₄NH₂²⁺ intermediate, which rapidly picks up a solvent molecule to produce the final product. The volume profile expected for such a reaction scheme is shown in Figure 13. The quantities $\Delta V^* (= \Delta \overline{V}(K) + \Delta V^*(k))$ and $\Delta \overline{V}$ are expected to depend strongly on the nature of the leaving group, since an increase in electrostriction due to charge creation will occur when X is an anion. The experimental data support these expectations: the most positive ΔV^* and $\Delta \tilde{V}$ values are reported for DMSO as leaving group, and the most negative values for SO_4^{2-} as leaving group, i.e., where the largest volume decrease due to electrostriction will occur. It is also possible to estimate the partial molar volume of the five-coordinate intermediate (denoted by R in Figure 13) with eq 43. $\bar{V}(R) =$

$$\Delta V^{*} + \bar{V}(\text{RHX}) + \bar{V}(\text{OH}^{-}) - \bar{V}(\text{H}_{2}\text{O}) - \bar{V}(\text{X}^{n-})$$
(43)

and the available data¹⁹⁵ indicate that this value is independent of the nature of X^{n-} , with an average of 71 $\pm 4 \text{ cm}^3 \text{ mol}^{-1}$. This is indeed close to the partial molar volume of 68 cm³ mol⁻¹ estimated for the six-coordinate $Co(NH_3)_5OH^{2+}$ species and significantly larger than the 60.3 and 61.3 cm³ mol⁻¹ values reported for the partial molar volumes of $Co(NH_3)_5H_2O^{3+}$ and $Co(NH_3)_6^{3+}$, respectively. From these results one may conclude that these five- and six-coordinate species of similar charge (2+) have approximately the same partial molar volume. Another interesting aspect of the data is that ΔV^* $-\Delta \bar{V}$ should be independent of the nature of X^{n-} , since this difference involves the reaction of $\text{Co}(\text{NH}_3)_4\text{NH}_2^{2+}$ with H_2O to produce $Co(NH_3)_5OH^{2+}$. This difference is indeed constant for the investigated systems,¹⁹⁵ with an average value of $+20 \pm 2$ cm³ mol⁻¹; this almost equals the ionization volume of water, i.e., the collapse in volume on forming the H⁺ and OH⁻ species.

The base hydrolysis reactions of a series of monoalkyl-substituted chloropentaamminecobalt(III) complexes revealed very similar results. In this case it is possible to gradually increase the size of the five-coor-

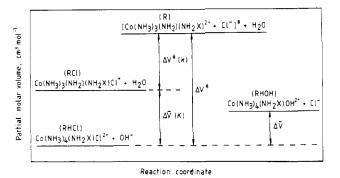
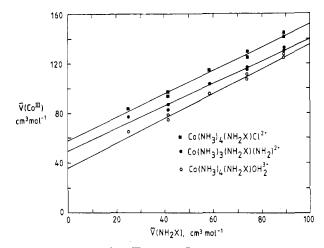



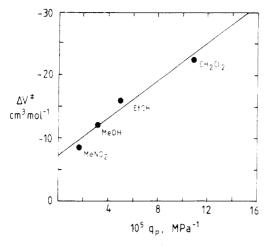
Figure 14. Volume profile for the base hydrolysis of Co- $(NH_3)_4(NH_2X)Cl^{2+}$ according to a S_N1cb mechanism.¹⁹⁸

Figure 15. Plot of $\vec{V}(\text{Co}^{\text{III}})$ versus $\vec{V}(\text{NH}_2\text{X})$ for a series of monoalkyl-substituted ammine complexes.¹⁹⁸

dinate intermediate by increasing the size of the substituent X. The suggested mechanism is similar to that outlined in (42); the corresponding volume profile is given in Figure 14. Partial molar volume calculations were carried out in the way described above. The partial molar volume of $C_0(NH_3)_3(NH_2)(NH_2X)^{2+}$ increases linearly with increasing X, as demonstrated in Figure 15. Furthermore, these values equal those for the corresponding $Co(NH_3)_4(NH_2X)OH^{2+}$ species; they are lower than those for $Co(NH_3)_4(NH_2X)Cl^{2+}$ and larger than those for $Co(NH_3)_4(NH_2X)H_2O^{3+}$. Thus, five- and six-coordinate species do seem to have similar partial molar volumes when the sixth ligand is indeed small such as OH^- or H_2O . For this series of complexes, the value of $\Delta V^* - \Delta \overline{V}$ is once again fairly constant, with an average value of 18 ± 2 cm³ mol⁻¹. This would also suggest that the volume of a water molecule completely disappears during the final step of the reaction and that the ionization process may account for this volume collapse.

In these systems ΔV^* is a composite quantity, and neutralization volume data (entries 400-412) were used to estimate the magnitude of $\Delta \tilde{V}(K)$. The resulting $\Delta V^*(k)$ is strongly dependent on the nature and size of the leaving group¹⁹⁵ and consists of intrinsic and solvational contributions. Alternative base hydrolysis mechanisms A, S_N2cb, and E2, were considered¹⁹⁸ and found to be unsuitable to account for the reported data. It follows that a S_N1cb mechanism presents the most realistic description of the observed data. The base hydrolysis reactions of a series of Rh(NH₃)₅X²⁺ complexes (entries 539-546) are characterized by ΔV^* values of ca. +20 cm³ mol⁻¹. These are substantially lower than those for the corresponding Co(III) complexes, with the result that $\Delta V^*(k) \approx 0$, after correction has been made for the contribution of $\Delta \bar{V}(K)$. This suggests that the intimate nature of the substitution process on the conjugate base species may be of the I_d type, during which partial bond breakage is accompanied by a volume decrease due to charge creation (i.e., increasing electrostriction). However, further investigations with differently charged leaving groups are needed before a more definite assignment can be made.

Metal Ion Catalyzed Aquation


Some metal ion catalyzed aquation reactions have been studied under pressure (entries 152, 413–418, and 547–549). In general, the reaction sequence involves a preassociation equilibrium during which Hg^{2+} or Ag^+ is attached to the halide ligand, followed by rate-determining dissociation of the bridged species. This reaction sequence can be summarized as in (44), from

which it follows that ΔV^* is once again a composite quantity, viz., $\Delta \overline{V}(K) + \Delta V^*(k)$. The Hg²⁺-catalyzed aquation reactions of M(NH₃)₅X²⁺, where M = Cr(III), Co(III), and Rh(III) and X = Cl and Br, all exhibit near-zero values for ΔV^* . This means that the volume decrease expected for the formation of the bridged species is evidently canceled by the volume increase during the rate-determining bond-cleavage process.¹³⁹ For the Hg²⁺-catalyzed aquation of $Rh(NH_3)_5I^{2+}$ and mer-RhCl₃(H₂O)₃, it was possible to separate K and k, and obtain $\Delta \overline{V}(K)$ and $\Delta V^*(k)$, kinetically. Surprisingly, $\Delta \overline{V}(K) = -1.7 \pm 1.0 \text{ cm}^3 \text{ mol}^{-1}$ for the iodo system, indicating that bridge formation is presumably accompanied by release of solvent molecules around the Hg²⁺ ion. The value is even slightly positive in the case of the trichloro complex.²³¹ It follows that $\Delta V^*(k)$ itself is also small, and an interchange mechanism is likely to account for the observed data. The Ag⁺-catalyzed aquation of $Co(NH_3)_5Br^{2+}$ is significantly affected by the presence of polyelectrolyte (NaPSS) species, and desolvation of the reactant and transition-state species was suggested to account for the observed effects.

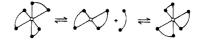
Ligand for Ligand Substitution Reactions

In the previous sections we have concentrated on ligand substitution processes that involve solvent molecules either as entering or as leaving groups. This section focuses on substitution reactions involving ligands other than solvent molecules. These usually occur in noncoordinating solvents or in the presence of strong nucleophiles for which the competition by solvent molecules is negligible.

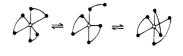
Mechanistic uncertainties regarding chelate-ring replacement reactions of $Cr(CO)_4(S^-S)$ complexes resulting from large differences in values for ΔS^* were solved with the help of the large positive ΔV^* data (entries 153 and 154) that underline the operation of a D mechanism. Substitution reactions of Fe(II) complexes (entries 248-257) all exhibit large positive ΔV^* values characteristic of a D mechanism. Departure of the leaving group accounts for the large increase in

Figure 16. Relationship between ΔV^* and q_p for the substitution of trans-Pt(py)₂(Cl)NO₂ by pyridine in different solvents.³³⁸

volume in the transition state. For the substitution of the $Fe(4-Mephen)_3^{2+}$ complex (entries 248 and 249), the authors suggest that the ΔV^{*} value may arise from extensive desolvation of CN⁻ during an associative binding of CN⁻. The formation of trans-Co(NH₃)₄(SO₃)₂⁻ from $Co(NH_3)_5SO_3^+$ (entry 421) is characterized by an independence of the entering-ligand concentration and a positive ΔV^* . These observations point toward a limiting D mechanism enhanced by the strong trans labilization effect of the sulfite ligand. The Co-NH₃ bond lengthening in the transition state was estimated to be 140 pm, which is remarkably close to the 120 pm predicted on the basis of a simple harmonic oscillator model.³³⁵ A similar mechanism was suggested for the substitution of NiL₂ (entries 481-483) by pan in acetic acid as solvent.


Ligand substitution reactions of tetra- and pentacarbonyl complexes of Mo are in many cases characterized by small positive or near-zero volumes of activation (entries 508–518). Although these were generally interpreted in terms of a dissociative mechanism, recent observations have suggested the possible operation of an interchange mechanism, and more work is required to reach a definite conclusion. This is a typical problem of interpreting kinetic data for a multistep mechanism such as the one outlined in (45), where several reaction

$$cis-Mo(CO)_4(py)_2 \xrightarrow{k_1} Mo(CO)_4(py) + py$$


$$Mo(CO)_4(py) + N \stackrel{k_2}{\longrightarrow} Mo(CO)_4(py) \stackrel{N}{\longrightarrow} \stackrel{fast}{\longrightarrow} Mo(CO)_4(N) + py (45)$$

steps will contribute to the overall value of ΔV^* and complicate its interpretation. The ΔV^* data reported for substitution reactions of triruthenium carbonyl clusters (entries 526–528) are significantly positive to underline the operation of a dissociative mechanism involving the release of CO. Here again the determination of ΔV^* helped to resolve the apparent discrepancy based on the reported values of ΔS^* .^{336,337} Substitution reactions of W (entries 633 and 634) also exhibit significantly positive ΔV^* values, which are in agreement with the suggested D mechanism.

Ligand substitution reactions of Pd(II) and Pt(II) complexes (entries 617–627 and 654–668) are all characterized by negative volumes of activation, except for

intermolecular dissociation

intramolecular ring-opening

intramolecular twisting

Figure 17. Schematic representation of different racemization mechanisms of octahedral complexes.⁹

three cases where OH⁻ is the entering ligand and a conjugate base mechanism is presumably operating. The negative values are typical for limiting A mechanisms that operate under all conditions, even where significant steric hindrance could affect the nature of the mechanism. The ΔV^* values show a remarkable solvent dependence resulting from varying degrees of electrostriction in the transition state when the leaving group is anionic. For the substitution of trans-Pt- $(py)_2(NO_2)Cl$ by py, the ΔV^* data show a good correlation with the q_p solvent parameter (Figure 16); the intercept of this plot gives a ΔV^*_{intr} value of -7 ± 1 cm³ mol⁻¹. This value is quite realistic for the associative process since the volume decrease associated with bond formation will partly be compensated by the volume increase due to the lengthening of the axial bonds in reaching a trigonal-bipyramidal transition state, as mentioned before.

D. Isomerization Reactions

Volumes of activation for three types of isomerization reactions, viz., racemization, geometrical, and linkage isomerization, have been determined (entries 676-757) and will be discussed in this sequence. The interpretation of the data in many cases strongly relies on our understanding of closely related substitution processes treated in the previous section, since these often form the basis of the isomerization process.

Racemization reactions can occur according to intermolecular dissociation, intramolecular ring opening, and intramolecular twisting, schematically presented in Figure 17. Some of these mechanisms exhibit characteristic pressure dependencies, although the overall reaction volume is zero for such processes. In the case of the one-ended dissociation mechanism, ring opening should result in a positive ΔV^*_{intr} contribution. However, when the ring-opened moiety is charged, solvent electrostriction could dominate the overall effect. This is the case, for instance, for the series of Cr(III) complexes (entries 676–678) in which ring opening of the oxalate ligand is accompanied by charge creation and an overall negative ΔV^* . The small negative and positive values reported for the other Cr(III) complexes are more consistent with a twist mechanism. Similarly, the data for the racemization of the Co-

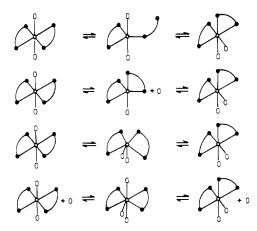
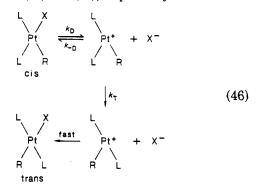
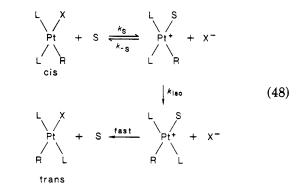



Figure 18. Schematic representation of the possible geometrical isomerization mechanisms of octahedral complexes.⁹


 $(Ph_2dtc)_3$ and $Co(pyrdtc)_3$ complexes are considered to be evidence for one-ended ring opening and intramolecular twisting, respectively. The ring-opening mechanism is also suggested to account for the data reported for the Ni(II) and Ge(IV) complexes. In the latter case, ΔV^* correlates with the donor number of the solvent, indicating that the one-ended opening of the acac chelate is accompanied by a negative volume contribution due to an increase in electrostriction.

Similar mechanisms have been suggested to account for the geometrical isomerization reactions, and these are summarized schematically in Figure 18, namely, one-ended dissociation of a chelate ligand, dissociation of a monodentate ligand, twisting without bond rupture, and an associative reaction with a nucleophile (usually a solvent or OH^{-} species). The large negative ΔV^{*} for the trans-to-cis isomerization of $Cr(C_2O_4)_2(H_2O)_2^-$ is consistent with one-ended dissociation of the oxalate ligand. An associative reaction mode could also account for this value, but the rate of water exchange is known to be 2 orders of magnitude slower than isomerization, thus eliminating this possibility. In addition, a more positive value of -5.5 cm³ mol⁻¹ was found for the reaction in 0.2 M HClO₄, which is associated with a smaller electrostriction contribution when the ring-opened ligand is protonated.³³⁹ In contrast, the corresponding malonate complex isomerizes more slowly; the positive volume of activation suggests a dissociative (most probably I_d) release of coordinated water. The positive ΔV^* data for the isomerization reactions of the bis(ethylenediamine) complexes of Co(III) (entries 704-721) are all in agreement with dissociatively activated processes, ranging from D for the more positive to I_d for the less positive values. The $\beta \rightarrow \alpha$ isomerization of the edda complexes depends strongly on the $[OH^{-}]$, which along with the large positive ΔV^{*} values suggests the operation of a S_N1cb mechanism similar to that outlined in eq 42. Ring opening of the diamine ligand is suggested to account for the observed isomerization process.⁸³ The substantially positive ΔV^* reported for the isomerization of SnCl₄·2Me₂S is interpreted in terms of an intramolecular twist mechanism. This value is significantly smaller than the +38.4 cm³ mol^{-1} reported for the exchange of Me₂S (entry 89) and rules out the possibility of a limiting D mechanism. In a similar way, the ΔV^* data for the isomerization of $cis-Pt(PEt_3)_2(Ph)X$ (entries 725–727) can be interpreted in terms of an intramolecular twist mechanism, although the operation of a dissociative mechanism can

probably not be ruled out completely. However, the more sterically hindered mesityl complex (entry 728) isomerizes with rate-determining solvolysis, which is an associative process. There is a longstanding contradiction in the literature concerning the dissociative nature of such isomerization processes, since the two possible mechanisms outlined in (46) and (48) exhibit similar rate laws (47) and (49), respectively.^{247,259,260,340-342}

 $k_{\text{obsd}} = k_{\text{D}}k_{\text{T}}/\{k_{-\text{D}}[\text{X}^{-}] + k_{\text{T}}\} = k_{\text{D}} \text{ (at low [X^{-}])}$ (47)

 $k_{\text{obsd}} = k_{\text{iso}} K_{\text{s}} / \{ [X^{-}] + K_{\text{s}} \} = k_{\text{iso}} \text{ (at low } [X^{-}])$ (49)

In the latter case (eq 48), increasing steric hindrance on R may decrease $k_{\rm S}$ and $k_{-\rm S}$ to the point that the preequilibrium treatment is invalid, and the steadystate treatment will modify eq 49 to eq 50. This means

$$k_{\text{obsd}} = k_{\text{iso}} k_{\text{S}} / \{k_{-\text{S}}[\text{X}^-] + k_{\text{iso}}\} = k_{\text{S}} \text{ (at low } [\text{X}^-]) (50)$$

that on increasing the steric hindrance a changeover in rate-determining step may occur (from k_{iso} to k_S), exactly as observed in the ΔV^* data. This is a typical example of how high-pressure kinetic studies sometimes lead to a complete reconsideration of a generally accepted mechanism.

A number of linkage isomerization reactions of M-ONO and M-SCN species have been studied under pressure (entries 730–757). For complexes of the type $M(NH_3)_5ONO^{2+}$ (M = Co(III), Rh(III), and Ir(III)), ΔV^* is negative and the transition state lies approximately halfway between the reactant and product states (see Figure 19). Similar results were reported for the bis-(ethylenediamine) complexes. No specific solvent dependence was observed, except for the catalysis by base, in which case the reaction proceeds via a conjugate base mechanism as supported by the large positive ΔV^* values (entries 732, 744, and 745). The isomerization reactions of Pd(L)SCN⁺ (entries 750-752) are suggested to proceed via a solvento intermediate. The reported ΔV^* values are therefore in good agreement with those observed for solvolysis of such complexes (entries 566-616). Finally, no significant pressure effects were

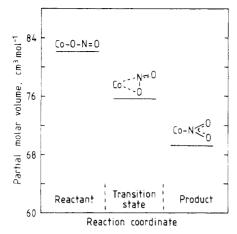


Figure 19. Volume profile for the linkage isomerization of Co-(NH₃)₅ONO²⁺.²⁶¹

reported for inversion at the sulfur atom for the series of cyclic sulfide complexes of the type trans-MX₂[S- $(CR_2)_n]_2$ (entries 753-756). This suggests that the inversion reaction is evidently a simple intramolecular process in which solvation changes are small and no significant volume changes are observed.

E. Addition and Elimination Reactions

The data for addition reactions summarized in Table I (entries 758–785) represent systems in which addition to a coordinate ligand or oxidative addition to the central metal ion occurs. The latter is accompanied by a change in coordination number and geometry, usually from square-planar to octahedral. Oxotitanium(IV) complexes react with H₂O₂ to produce peroxotitanium-(IV) species. This process can be considered either as a substitution reaction or as an addition reaction. The negative ΔV^* values reported for the uncatalyzed path support a mechanism in which bond formation with H_2O_2 occurs, i.e., an associative reaction mode. In the case of the acid-catalyzed path, protonation of the oxo group is expected to make a small positive contribution and so account for the more positive ΔV^* values. A similar trend is observed for the reaction of $VO_2(nta)^{2-}$ with H_2O_2 , and the suggested mechanism is outlined in Figure 20. Both reaction paths involve a seven-coordinate intermediate, and the rate-determining step is the rearrangement of the associated complex to the distorted pentagonal bipyramid. Thus, the proton actually assists the rearrangement step. There is no direct evidence to distinguish between the release of the oxo or H_2O_2 oxygen as water in the final step, but it is likely that the peroxo product results from the oxo group and an oxygen atom of the H_2O_2 molecule.

Additions of NO⁺ and CO₂ to metal hydroxo complexes are generally referred to as uptake processes.^{343,344} A general example of such an uptake mechanism, combined with the reverse decarboxylation step, is given in (51). Such uptake reactions are characterized by

> $ML_{5}OH^{(n-1)+} + CO_{2} \iff ML_{5}OCO_{2}H^{(n-1)+}$ -H* $\left| \right|_{*}H^{+} \qquad \left| \right|_{*}$ (51) $ML_{5}H_{2}O^{n+} \qquad ML_{5}OCO_{2}^{(n-2)+} + H^{+}$

negative ΔV^* values, and these are ascribed to the intrinsic volume decrease associated with O-C bond

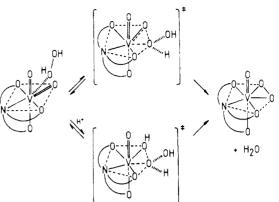


Figure 20. Proposed mechanism for the reaction of H_2O_2 with $\rm VO_2(nta)^{2^-}$ to produce $\rm VO(O_2)(nta)^{2^-,56}$

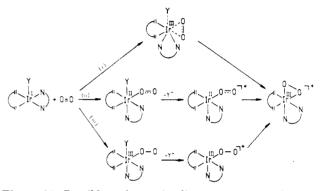


Figure 21. Possible pathways for dioxygen activation by a coordinatively saturated Ir(I) complex.²⁸⁰

formation. A similar effect was observed for the hydrolysis of CO₂, for which ΔV^* has a value of -9.9 ± 1.9 cm³ mol⁻¹.³⁴⁵

Addition of OH^- to complexes of the type $Co^{III}(L)$ -(hfac) proceeds through addition to the hfac ligand^{346,347} and is characterized by a $\Delta \bar{V}$ value of between -8 and +11 cm³ mol⁻¹, depending on the nature of L. Solvational effects due to charge neutralization will result in volume increases for the cationic complexes, whereas charge concentration will cause volume decreases. Thus, ΔV^* for the addition of OH^- is also positive due to the decrease in electrostriction, compared to a negative ΔV^* for the reaction with H₂O ascribed to the bond formation component.

Cycloaddition reactions of tricarbonyl(cycloheptatrienone)iron with tetracyanoethene (entries 767-769) exhibit remarkably negative volumes of activation, in agreement with the type of data usually observed for organic cycloaddition reactions. The authors²⁷⁴ suggest the operation of a concerted mechanism.

Oxidative-addition reactions are in general characterized by strongly negative volumes of activation (entries 783-785), which arise partly from intrinsic volume changes due to bond formation and partly from an increase in electrostriction since the transition state is expected to exhibit polar properties. The values of ΔV^* for instance favor two of the possible reaction paths (ii and iii) outlined for the oxidative addition of O₂ to Ir(cod)(phen)I in Figure 21. It should be kept in mind that part of the volume collapse observed during oxidative addition must arise from the formal oxidation of the metal ion.

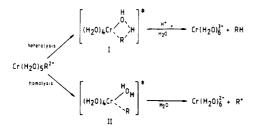


Figure 22. Heterolysis and homolysis reactions of organo-chromium(III) species.²⁸¹

Elimination reactions are in the majority of cases characterized by positive ΔV^* values (entries 786–799). The first couple of entries demonstrate substantially different ΔV^* data for homolytic and heterolytic bond scission reactions of organochromium(III) complexes. These data can be interpreted in terms of the mechanism outlined in Figure 22. Heterolytic cleavage exhibits almost zero ΔV^* values, which point to a transition state (I) that involves no net development of charge or major net changes in bond lengths. On the contrary, ΔV^* for homolytic bond cleavage is significantly positive, which has been ascribed to massive desolvation, i.e., breakup of the solvent cage, as the organic radicals separate from Cr²⁺ in the transition state (II). Decarboxylation reactions of complexes of the type $M(NH_3)_5OCO_2H^{2+}$ (see eq 51) are characterized by small positive ΔV^* values that are in close agreement with a value of $+6.4 \pm 0.4 \text{ cm}^3 \text{ mol}^{-1}$ reported³⁴⁵ for the decarboxylation of HCO_3^- . The near-zero values found for the decarboxylation of the en, edda, and nta carbonato complexes are partly ascribed to the high ionic strength (2-3 M) employed during such measurements. Hydrogen-bonding effects in such strongly acidic medium could also partly account for the low values. The elimination of OH⁻ from $Co(en)_2(hfacOH)^+$ exhibits a positive volume of activation, which is even more profound in the base-catalyzed path.

A few reaction volume data have become available for the change in coordination number of Ni(II) complexes. A series of data for the addition of water molecules to square-planar Ni(II) complexes (entries 484-495) demonstrate an overall volume decrease during such reactions. One can assume that these $\Delta \overline{V}$ values mainly represent the intrinsic component, since no change in electrostriction is expected. The volume decrease can be ascribed to the transfer of two solvent molecules from the bulk solvent into the coordination sphere, which is partially canceled by a volume increase due to the expansion of the macrocyclic molecular aperture associated with the change in spin state.

F. Electron-Transfer Reactions

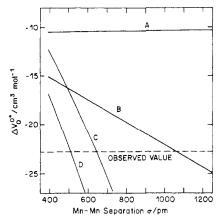
Electron-transfer reactions can in general be classified as outer sphere or as inner sphere, depending on the nature of the precursor intermediate species, Ox//Red, in (52), which can be either an ion pair or encounter

 $Ox^{-}//Red^{+} \Rightarrow Ox^{-} + Red^{+}$

$$Ox + \text{Red} \stackrel{k}{\longleftarrow} Ox / / \text{Red}$$
$$Ox / / \text{Red} \stackrel{k}{\longrightarrow} Ox^{-} / / \text{Red}^{+}$$
(52)

The recent interest in ΔV^* studies of outer-sphere electron-transfer (OSET) reactions was partly aroused by the possibility to use such data to test the applicability of theories of the Marcus-Hush type. Pressures up to 300 MPa have a marked effect on the intermolecular distances and interactions and can therefore reveal intermolecular phenomena. In the case of selfexchange and closely related reactions, $\Delta \bar{V}$ is zero and does not have to be considered in the overall interpretation of ΔV^* . This is not the case for nonsymmetrical ET reactions.³⁵⁰ In the earlier work referred to above,³⁴⁸ ΔV^* for the self-exchange reactions Fe(H₂O)₆^{2+/3+}, Co-(en)₃^{2+/3+}, and Tl(H₂O)₆^{+/3+} varies between -12 and -20 cm³ mol⁻¹. Stranks used the Marcus-Hush theory to calculate ΔV^{\dagger} in terms of internal reorganization (IR). solvent reorganization (SR), Coulombic interaction (Coul), and Debye-Hückel contributions (DH) according to eq 54. But as Wherland³⁵¹ pointed out, the sign

$$\Delta V^* = \Delta V^*_{\mathrm{IR}} + \Delta V^*_{\mathrm{SR}} + \Delta V^*_{\mathrm{Coul}} + \Delta V^*_{\mathrm{DH}}$$
(54)


of $\Delta V^*_{\rm DH}$ in Stranks' original article was in error, so that the calculated values did not come close to the observed values. In a recent study of the $MnO_4^{-/2-}$ system (entries 802-806), a detailed theoretical treatment was presented in an effort to improve the understanding and to resolve the apparent discrepancy. Each of the terms in (54) was reanalyzed^{286,349} by varying the metal-metal internuclear separation and by considering possible contributions arising from the nonadiabaticity of the

complex, or a bridged intermediate, respectively. This means that the coordination sphere of the reactants remains intact in the former case and is modified by substitution processes in the latter. It is, therefore, reasonable on the basis of these two mechanisms to expect significantly different pressure dependencies not only when the electron-transfer step is rate determining but also when precursor formation or successor dissociation is rate determining. Preliminary studies reviewed before¹ indicated that ΔV^* was invariably positive $(+2 \text{ to } +11 \text{ cm}^3 \text{ mol}^{-1})$ for an inner-sphere mechanism, presumably due to the expulsion of a ligand during precursor formation, and significantly negative for an outer-sphere mechanism. In fact, the apparent agreement between experimentally observed and theoretically predicted ΔV^* values for a series of outersphere self-exchange reactions was so good that it probably discouraged further experimental studies of such processes.³⁴⁸ However, as we will see later, the agreement is not at all good and in many cases highly questionable.

A general difficulty encountered in kinetic studies of electron-transfer processes concerns the separation of K and k in (52). In the majority of cases precursor formation is a fast step, followed by rate-determining electron transfer. In the presence of an excess of Red the rate expression is given by (53). K is usually small,

$$k_{\text{obsd}} = kK[\text{Red}]/\{1 + K[\text{Red}]\}$$
(53)

such that (53) reduces to $k_{obsd} = kK[Red]$, which means that the observed second-order rate constant (kK) is a composite quantity and $\Delta V^*(k_{obsd}) = \Delta \overline{V}(K) + \Delta V^*(k)$. In some cases it is indeed possible to separate k and Kkinetically by the use of the doubly reciprocal plotting procedure. A detailed account on the effect of pressure on inner-sphere and outer-sphere processes was recently presented by Swaddle.349

Figure 23. Calculated dependence of ΔV^* for the cation-independent ET reaction on the Mn–Mn distance: (A) adiabatic two-sphere model; (B) nonadiabatic two-sphere model; (C) adiabatic ellipsoidal-cavity model; (D) nonadiabatic ellipsoidal-cavity model.²⁸⁶

process. ΔV^* was predicted by the use of an adiabatic two-sphere model, a nonadiabatic two-sphere model, an adiabatic ellipsoidal-cavity model, and a nonadiabatic ellipsoidal-cavity model, for which the results are presented as a function of the Mn-Mn separation in Figure 23. It can be concluded from these calculations that ΔV^* can be predicted by a modified Marcus-Hush type model in which the pressure dependence of the most favorable Mn-Mn separation is acknowledged and the reactants are considered to be enclosed in a common cavity in the solvent. It is concluded that an adiabatic or slightly nonadiabatic ellipsoidal-cavity model accounts for the experimental data.

Theoretical calculations for OSET in the systems $Mn(CNR)_{6}^{+/2+}$ (entries 807–814) cannot account for the experimentally observed ΔV^* , and it is concluded that it is the flexibility of the ligands and not their size that contributes most to the observed trends. Quite surprising is the fact that the simple Marcus-Hush treatment does predict a value of $-7.3 \text{ cm}^3 \text{ mol}^{-1}$ for the OSET reaction of $Co(terpy)_2^{2+}$ and $Co(bpy)_3^{3+}$ in aqueous solution, in good agreement with the experimental value (entry 818). However, this reaction is not strictly speaking a true self-exchange reaction, and the apparent agreement could be fortuitous.³⁴⁹ The strongly positive ΔV^* values reported for the Fe(CN)₆^{3-/4-} system (entries 815-817) clearly fall out of line with the other data for such processes, and it has been suggested³⁴⁹ that the involvement of alkali-metal cations in the transition state may account for these results.

Quite an extensive series of data is presently available for nonsymmetrical OSET reactions (entries 822–838). In many of these cases it was possible to resolve ΔV^* into $\Delta \overline{V}(K)$ and $\Delta V^{\dagger}(k)$. For closely related systems, the values of $\Delta V(K)$ exhibit tremendous fluctuations. Although we generally expect a substantial increase in volume due to partial charge neutralization during ion-pair formation, this has only been found in two cases (entries 835 and 842). It is surprising that $\Delta V(K)$ is usually very small (almost zero) and in some cases even slightly negative. It must be kept in mind that such data are subjected to large error limits due to the indirect way in which the pressure dependence of K is obtained. Furthermore, since many of these studies are performed at high ionic strength, ion association with other counterions must take place and could account

for the observed deviations. However, the nature of the ion pair produced as precursor species is unknown, and it is therefore difficult to predict volume changes based on partial molecular overlap and partial charge neutralization. On the contrary, the $\Delta V^*(k)$ values are all substantially positive and do not exhibit a clear trend with the nature of the substituents on the Co(III) center. Two explanations were offered to account for these values. The Sendai group argued that the expansion of the cobalt complex on going from low-spin Co(III) to high-spin Co(II) can contribute substantially (20-30 cm³ mol⁻¹) to $\Delta V^*(k)$; the Frankfurt group suggested that the increase in molar volume of ca. 43 cm³ mol⁻¹ in going from $Fe(CN)_6^{4-}$ to $Fe(CN)_6^{3-}$ largely accounts for the observed data. Recent theoretical calculations³⁵² underline the important contribution arising from the overall increase in volume of ca. 65 cm³ mol⁻¹ during the ET step.

The remaining data concern inner-sphere electrontransfer (ISET) reactions. The series of data reported for the reduction of $Co(NH_3)_5 X^{2+}$ by Fe^{2+} in H_2O and DMSO (entries 822-829) can be accounted for in terms of changes in solvation and steric crowding. They definitely rule out the possible formation of a tetrahedral $Fe(solvent)_4^{2+}$ species rather than the predominant hexacoordinate solvent species, a suggestion made in the literature.³⁵³ The results for the reduction of cis- $Co(en)_2Cl_2^+$ (entry 800) are the first data reported for an ISET reaction in which the precursor formation step can be separated from the electron-transfer step. The negative ΔV^* for the latter step is in good agreement with that usually found for OSET reactions. Intramolecular electron-transfer reactions (entries 839, 843-845, and 848-850) are all characterized by large positive ΔV^* values. The value of +35 cm³ mol⁻¹ for the $Co(NH_3)_5OSO_2^+$ reaction was ascribed to the formation of Co(II) and a SO3⁻ radical. Alternatively, the release of the trans ammine ligand or the breakup of the solvent cage surrounding the sulfite radical (see homolysis) could also account for this large value. The extreme value of $+38 \text{ cm}^3 \text{ mol}^{-1}$ reported for the μ -pyrazine complex (entry 848) cannot be accounted for in terms of the sum of intrinsic and solvational volume changes. Hydrogen-bonding interactions were suggested to play a significant role in determining the magnitude of ΔV^* .

G. Photochemical and Photophysical Processes

The reactions reported in the earlier sections originate from the electronic ground state of the molecule and occur at rates for which transition-state theory is applicable. In this section, we focus on the effect of pressure on chemical and physical processes that occur in the electronic excited state of a molecule. The overall photochemical process is the result of a sequence of events, some of which cannot be treated by transitionstate theory. These events include initial electronic excitation, vibrational relaxation, internal conversion and intersystem crossing, reactive, radiative, and nonradiative deactivation, and further reactions of transient intermediates to the final products.³⁵⁴ It follows that any of these events can be influenced by pressure, and mechanistic information on such events can only be obtained when the excited-state or transient species has a sufficient lifetime to be vibrationally relaxed with

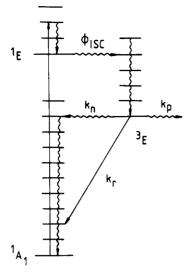


Figure 24. Jablonski diagram for the ligand field photolysis of Rh(III) ammine complexes.

respect to the medium.^{25,26,354,355} Although the treatment and interpretation of such data are usually much more complicated than for thermally induced reactions, the obtained information may be unique since highpressure studies are one of only a few methods available to obtain mechanistic information on excited-state processes.

The presentation of the data in Table I has been subdivided into photochemical and photophysical processes. To understand the effect of pressure on a photochemical reaction, it is of fundamental importance to have sufficient information on all the deactivation processes that affect the overall reaction. If we consider a sequence of events in which excitation of a single ground state is followed by internal conversion and intersystem crossing to the lowest excited triplet state, it can then be followed by the photoreaction (k_p) , nonradiative (k_n) , and radiative (k_r) deactivation. The Jablonski diagram for such a series of events is given in Figure 24. The photochemical quantum yield can then be expressed by (55), where τ is the lifetime of the

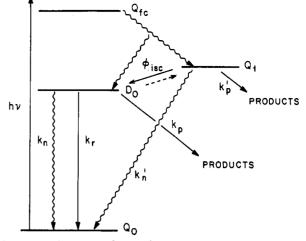
$$\phi_{\rm p} = \phi_{\rm ISC} k_{\rm p} / (k_{\rm p} + k_{\rm n} + k_{\rm r}) = \phi_{\rm ISC} k_{\rm p} \tau \qquad (55)$$

lowest excited triplet state. A similar expression can be written for the quantum yield for phosphorescence ϕ_r , and both these can be rewritten in the form given in (56). Thus, the pressure dependence of k_p (or k_r)

$$k_{\rm p} = \phi_{\rm p} / \phi_{\rm ISC} \tau$$

$$k_{\rm r} = \phi_{\rm r} / \phi_{\rm ISC} \tau$$
(56)

can only be obtained when the pressure dependencies of $\phi_{\rm p}$ (or $\phi_{\rm r}$), $\phi_{\rm ISC}$, and τ are known. In terms of volumes of activation, this results in (57). The nonradiative


$$\Delta V^*(k_{\rm p}) = \Delta V^*(\phi_{\rm p}) - \Delta V^*(\phi_{\rm ISC}) - \Delta V^*(\tau)$$

$$\Delta V^*(k_{\rm r}) = \Delta V^*(\phi_{\rm r}) - \Delta V^*(\phi_{\rm ISC}) - \Delta V^*(\tau) \quad (57)$$

deactivation rate constant k_n (and its pressure dependence) can be calculated from eq 58. Equations 56 and

$$k_{\rm n} = \tau^{-1} - k_{\rm p} - k_{\rm r} \tag{58}$$

58 clearly demonstrate the type of measurements that must be performed in order to obtain the effect of pressure on a single rate constant $(k_p, k_n, \text{ or } k_r)$ from

Figure 25. A simplified state diagram for the photoreactions of Cr(III) complexes: Q_{fc} is the Franck–Condon quartet state formed by vertical excitation; Q_1 and D_0 are the thermally equilibrated quartet and doublet excited states.³⁵⁴

which mechanistic conclusions are to be drawn in a similar way as reported in the earlier sections. Another complication originates from the fact that partial molar volumes of short-lived excited states cannot be as readily determined as those for ground-state species; they must be obtained in indirect ways. Despite these difficulties, the growing use of pressure effects in the study of photochemical and photophysical properties^{25,26,354,355} has provided valuable new insight into the mechanisms of excited-state processes.

Substitution Reactions

Entries 854-899 represent the photoinduced substitution reactions studied over the past decade. The first quantitative studies of pressure effects on such reactions were reported for a series of Cr(III) complexes, for which the two ligand-exchange processes are thought to occur via different electronic excited states. The

$$Cr(NH_3)_5H_2O^{3+} + X^{n-}$$

$$Cr(NH_3)_5X^{(3-n)+} + H_2O \xrightarrow{h_{\nu}} \langle c_{is}-Cr(NH_3)_4(H_2O)X^{(3-n)+} + NH_3$$

$$X^{n-} = CI^{-}, Br^{-}, SCN^{-}, NH_3$$

pressure dependence of ϕ_p resulted in significantly negative apparent ΔV^* values, viz., an average value of -6 cm³ mol⁻¹ for aquation of NH₃ and of -10 to -13 cm³ mol^{-1} for aquation of X^{n-} . Since little was known about the pressure dependence of the other deactivation processes, it was assumed that these apparent values represent those for the primary photoreactions. Accordingly, the data were interpreted in terms of an associative (most probably I_a) substitution process. The more negative values found for the aquation of X^{n-} as compared to NH₃ can be ascribed to solvational contributions originating from charge creation (i.e., electrostriction) in the transition state. A recent detailed reanalysis of the data²⁶ also supports the associative nature of the substitution process. However, it must be kept in mind that the doublet emission lifetimes of Cr(III) ammine complexes exhibit nonnegligible pressure dependencies (entries 930-939), which could affect the above given interpretation. Furthermore, the complex state diagram suggested for the photoreactions of Cr(III) complexes (Figure 25) offers a series of possible

TABLE IV. ΔV^* from Photochemical and Photophysical Measurements for the Solvolysis Reactions of Rh(III) Ammi	ne
Complexes ³⁵⁵	

solvent	complex	photosolvolysis product	$\Delta V^*(\phi_{\mathbf{p}})$	$\Delta V^{*}(au^{-1})$	$\Delta V^*(k_p)$
H ₂ O	Rh(NH ₃) ₅ Cl ²⁺	Rh(NH ₃) ₅ (H ₂ O) ³⁺	-5.2 ± 0.4	(-3.4) ^a	-8.6 ± 1.6
-		$trans-Rh(NH_3)_4(H_2O)Cl^{2+}$	$+12.7 \pm 1.2$. ,	$+9.3 \pm 1.9$
D_2O	$Rh(ND_3)_5Cl^{2+}$	$Rh(ND_3)_5(D_2O)^{3+}$	-4.2 ± 0.5	-3.5 ± 1.1	-7.7 ± 1.6
-		$trans-Rh(ND_3)_4(D_2O)Cl^{2+}$	$+9.5 \pm 1.6$		$+6.0 \pm 2.2$
H ₂ O	$Rh(NH_3)_5Br^{2+}$	$Rh(NH_3)_5(H_2O)^{3+}$	-10.3 ± 1.2	(+3.5) ^a	-6.8 ± 1.6
		$trans-Rh(NH_3)_4(H_2O)Br^{2+}$	$+4.6 \pm 0.6$		$+8.1 \pm 1.2$
D_2O	$Rh(ND_3)_5Br^{2+}$	$Rh(ND_3)_5(D_2O)^{3+}$	-9.4 ± 1.5	$+4.1 \pm 0.6$	-5.3 ± 1.8
		$trans-Rh(ND_3)_4(D_2O)Br^{2+}$	$+3.4 \pm 0.5$		$+7.5 \pm 1.1$
H_2O	$trans-Rh(NH_3)_4Cl_2^+$	$trans-Rh(NH_3)_4(H_2O)Cl^{2+}$	$+2.5 \pm 0.5$	Ь	$+2.8 \pm 0.6$
H_2O	trans-Rh(NH ₃) ₄ Br ₂ +	$trans-Rh(NH_3)_4(H_2O)Br^{2+}$	$+3.4 \pm 0.7$	Ь	$+2.9 \pm 0.7$
H_2O	$Rh(NH_{3})_{6}^{3+}$	$Rh(NH_3)_5(H_2O)^{3+}$	$+3.7 \pm 0.5$	Ь	$+3.9 \pm 0.5$
H₂O	$Rh(NH_3)_5I^{2+}$	$trans-Rh(NH_3)_4(H_2O)I^{2+}$	$+0.3 \pm 0.1$	ь	$+1.4 \pm 0.9$
H ₂ O	$Rh(NH_3)_5SO_4^+$	$Rh(NH_3)_5(H_2O)^{3+}$	-2.7 ± 0.4	b	-3.9 ± 0.6
FMA	$Rh(NH_3)_5Cl^{2+}$	Rh(NH ₃) ₅ (FMA) ³⁺	-4.6 ± 0.7	-0.3 ± 0.4	-4.9 ± 1.1
		trans-Rh(NH ₃) ₄ (FMA)Cl ²⁺	$+4.2 \pm 0.9$		$+3.9 \pm 1.3$
DMF	$Rh(NH_3)_5Cl^{2+}$	$trans-Rh(NH_3)_4(DMF)Cl^{2+}$	$+6.3 \pm 0.9$	$+1.3 \pm 0.2$	$+7.6 \pm 1.1$
DMSO	$Rh(NH_3)_5Cl^{2+}$	Rh(NH ₃) ₅ (DMSO) ³⁺	-7.8 ± 1.8	-1 ± 1	-8.9 ± 2.7
		trans-Rh(NH ₃) ₄ (DMSO)Cl ²⁺	$+4.4 \pm 0.9$		$+3.3 \pm 1.8$

^aAssumed value. ^bNot measured. Data in cm³ mol⁻¹.

reaction routes that can account for the spectrum of photochemical effects reported in the literature.³⁵⁴

The positive value of ΔV^* reported for the photoaquation of $Cr(bpy)_3^{3+}$ (entry 860) was interpreted in terms of possible mechanisms for the formation of $Cr(bpy)_3(H_2O)^{3+}$, in which coordination of the "pocket" water molecules appears to be most likely. All in all, the interpretation of the data for Cr(III) ammine complexes is limited by the fact that pressure effects have been determined for ϕ_p and τ , but not for two other key excited-state processes, viz., intersystem crossing efficiency and the yield of the "prompt" reaction from the quartet state.³⁵⁴

Significantly more progress has been made in the study of photosolvolysis reactions of Rh(III) amine complexes (entries 879–899). For complexes of the type Rh(NH₃)₅X⁽³⁻ⁿ⁾⁺, the photosolvolysis reactions can be summarized by (59), where S = solvent. These reac-

$$\operatorname{Rh}(\operatorname{NH}_{3})_{5} X^{(3-n)+} + S \xrightarrow{h_{\nu}} \left(\int_{\operatorname{LF}} \left(\int_{\operatorname{LF$$

tions are generally accepted to follow the sequence of steps outlined in Figure 24 (see literature cited in ref

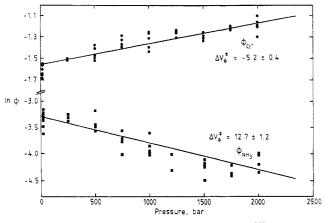
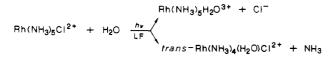
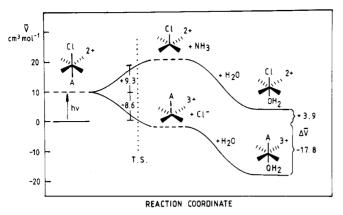
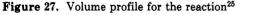





Figure 26. Pressure dependence of the reaction³⁵⁵

47). Since $\phi_{\text{ISC}} = 1$ for these reactions, eq 56 simplifies to $k_{\rm p} = \phi_{\rm p}/\tau$, which means that $\Delta V^*(k_{\rm p})$ can be determined from $\Delta V^*(\phi_{\rm p}) - \Delta V^*(\tau)$. It was generally found that the two photosolvolysis reactions in (59) exhibit opposite pressure effects; a typical example for the photoaquation of $Rh(NH_3)_5Cl^{2+}$ is given in Figure 26. Similarly, the pressure dependence of the excited-state lifetime, measured by using pulsed laser techniques, also exhibits different trends depending on the major photochemical reaction observed (see entries 1005-1009). Combining these data results in the $\Delta V^*(k_p)$ values summarized in Table IV, from which it follows that the primary photochemical reactions exhibit the same pressure dependencies as ϕ_p . Throughout the series of complexes, solvolysis of NH₃ is accompanied by a positive $\Delta V^*(k_p)$ value, whereas the solvolysis of X^{n-1} exhibits negative values. Both these values can be interpreted in a qualitative way in terms of a D mechanism. The substantial difference in $\Delta V^*(k_p)$ for the halide and ammine labilizations can be ascribed to a negative contribution from ΔV^*_{solv} due to charge creation when the halide dissociates from the dipositive complex to form a tripositive cation and X^- . No appreciable charge creation is expected for the dissociation of NH_3 . This difference also shows up in the overall $\Delta \overline{V}$ for the ground-state process of +3.9 and -17.8 cm³ mol⁻¹, respectively, in the case of the $Rh(NH_3)_5Cl^{2+}$ complex,⁴⁷ demonstrating the important contribution of charge creation when the leaving group is anionic. A volume profile for this system is given in Figure 27, in which it is assumed that the ligand field excited triplet state has a partial molar volume of ca. 10 cm³ mol⁻¹ larger than the ground-state molecule based on an expected increase in bond length of 0.1 Å.356,357 According to this profile it is quite possible that the excess volume of the excited state is focused along the axis of the bond-cleavage process to produce a "ground-state-like" five-coordinate intermediate. The other data in Table IV can be interpreted in a similar way. It is interesting to note that the complexes showing larger $\Delta V^*(k_p)$ values are those undergoing the excited-state reaction with slower rates, i.e., with lower $\phi_{\rm p}$. This can probably be attributed to the later transition states of the slower reactions. Photoaquation of cis-Rh(bpy)₂Cl₂⁺ exhibits a much more negative ΔV^* $(k_{\rm p})$ value (entry 896) compared to the values reported

 $trans - Rh(NH_3)_4(H_2O)Cl^{2+} +$ Rh(NH_3)_5Cl^{2+} + H_2O $\xrightarrow{h\nu}_{LF}$ Rh(NH_3)_5H_2O^{3+} + Cl^-

Figure 28. General scheme for the photochemical cis/trans isomerization of Rh(III) amine complexes.³¹²

for the dichloro and dibromo ammine complexes (entries 898 and 899). This could signify the operation of an A mechanism involving the "pocket" water molecules as suggested for the $Cr(bpy)_3^{3+}$ complex.

A few data sets have also been reported for the photosolvolysis of other metal complexes. Aquation of $Fe(CN)_6^{4-}$ (entry 864) exhibits significantly positive ΔV^* values, which are in the light of the other reported data in good agreement with a D mechanism. The thermal back reaction exhibits a ΔV^* value of +13.5 cm³ mol⁻¹, which underlines the dissociative nature of that process. The data for the Co(III) complexes can be interpreted in a similar way. Charge creation during release of Br⁻ can account for the slightly negative ΔV^* value (entry 865). The photosolvolysis reactions of the series of Ru(II) complexes all exhibit positive ΔV^* , once again supporting a D mechanism.

Isomerization Reactions

A number of photoisomerization reactions have been studied as a function of pressure (entries 900–905). On ligand field excitation of the Rh(III) ammine complexes, dissociation of a ligand occurs prior to rearrangement, as indicated in Figure 28. The values of $\Delta V^*(k_p)$ are such that they do not provide a definitive description of the mechanism, but support the dissociative (I_d or

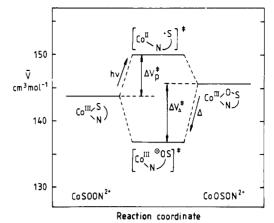


Figure 29. Volume profile for the system²⁶⁸

NHa

$$(en)_2 Co(SOON)^{2+} \xrightarrow{h\nu, CT} (en)_2 Co(OSON)^{2+}$$

D) nature of the process when a general mechanism is operable. The linkage isomerization of $Co(en)_2$ - $(SO_2CH_2CH_2NH_2)^{2+}$ (entry 900) proceeds via chargetransfer (CT) excitation and exhibits a clearly positive $\Delta V^*(k_p)$ value, compared to that of $-9.0 \pm 0.7 \text{ cm}^3 \text{ mol}^{-1}$ for the thermal back reaction. Both these values are interpreted in terms of ring-opening reactions, which can be visualized as homolysis for the ring opening of the CT state and dissociation accompanied by significant charge creation for the thermal process. A volume profile for the overall process was constructed on the assumption that the partial molar volume of the CT state is very close to that of the ground state (see Figure 29). The volume profile shows a difference of at least 13 cm³ mol⁻¹ between the two transition states, which is due to the increase in electrostriction and the smaller volume of the Co(III) ring-opened species.

Electron-Transfer Reactions

Charge-transfer excitation can in principle lead to the formation of redox products. Photooxidation of Fe- $(CN)_5NO^{2-}$ (entries 906–912) has been studied by numerous investigators, and oxidation of Fe(II) accompanied by solvation of the NO ligand was reported to be the major reaction mode in aqueous and nonaqueous solvents. In these studies (see literature cited in ref 313), arguments were presented in favor of associative and dissociative reaction modes. The process is significantly affected by the properties of the solvent and the viscosity of the medium. The clearly positive values of $\Delta V^*(k_{\rm p})$ are in line with a dissociative mechanism in which a cage recombination step accounts for the observed medium effects. The formation of a caged radical pair Co^{II}(Br[•]) from the LMCT state was suggested to account for the pressure dependence of the CT photolysis of $Co(NH_3)_5Br^{2+}$ (entry 913). Several data were reported for electronic and electron-transfer quenching of the long-lived MLCT excited state of $\overline{Ru}(bpy)_3^{2+}$ (entries 916–927). Some quenchers exhibit remarkably large ΔV^* values, although there does not appear to be a satisfactory explanation for these observations at present. The reductive elimination reaction of $trans-Pt(CN)_4(N_3)_2^{2-}$ exhibits significantly positive volumes of activation, which are in agreement with the dissociative nature of the decay of the LMCT state to produce Pt(III) and N_3 radicals. Dissociation

of the caged radical pair is expected to exhibit large solvent-dependent pressure effects (entries 928 and 929).

Photophysical Processes

The remainder of the data in Table I concern the pressure dependence of photophysical processes, viz., radiative deactivation, nonradiative deactivation, and electronic transitions. Information on these processes is usually obtained in an indirect manner by measuring the pressure dependence of the excited-state lifetime (τ) and combining this with quantum yields and spectral data as a function of pressure. For most of the studied systems, radiative deactivation (k_r) is only a minor component of the overall mechanism. Nevertheless, this property is an important probe for the dynamics of the excited state since it enables the measurement of τ even when the emission is weak since it can usually be determined very accurately. Entries 930-1017 present the data in terms of the pressure dependence, i.e., the volume of activation, of the lifetime of the excited state expressed as τ^{-1} (i.e., the sum of all the deactivation rate constants). Information on the pressure dependence of the nonradiative deactivation process (in terms of k_n) is given in entries 1018–1029.

The emission lifetimes of $Cr(bpy)_3^{3+}$, $Cr(en)_3^{3+}$, and related compounds exhibit relatively small pressure dependencies, the largest effect being found for Cr- $(NH_3)_5NCS^{2+}$. The latter value is such that it must be taken into account in the interpretation of $\Delta V^*(\phi_p)$. Low-spin/high-spin transitions and equilibria of Fe(II)complexes exhibit very significant ΔV^* and ΔV values (entries 940-955). The high-spin complex has a partial molar volume of up to 14 cm³ mol⁻¹ larger than the low-spin configuration, depending on the nature of the solvent. Values of ΔV^* are throughout positive for the low-spin/high-spin conversion and negative for the reverse process, indicating that the transition state must be between the two spin states on a volume basis. The Ru(bpy)₃²⁺ and Ru(phen)₃²⁺ complexes exhibit remarkably temperature-dependent $\Delta V^*(\tau^{-1})$ values. These complexes show little or no unimolecular photochemistry and the emission quantum yield is small, so that the dominant deactivation process is nonradiative. The temperature dependence was explained in terms of two competing deactivation processes, one involving slow deactivation from the MLCT state, and the second via a thermally activated LF state from which nonradiative deactivation is extremely rapid. Such a mechanism is presented schematically in Figure 30. From the available data is was possible to calculate $\Delta V^{*}(k_{n})$ for the CT \rightarrow GS and CT \rightarrow LF transitions (entries 976-984 and 998-1004), from which it follows that the ca. 10 cm³ mol⁻¹ more positive value for the deactivation via the LF state originates from the larger partial molar volume of this state.

The lifetimes of the lowest excited state of the Rh(III) ammine complexes (entries 1005–1009) show small pressure dependencies. Combination of these data with $\Delta V^*(\phi_p)$ results in $\Delta V^*(k_n)$ (see entries 1025–1029). Remarkable is the observation that both $\Delta V^*(\tau^{-1})$ and $\Delta V^*(k_n)$ parallel the $\Delta V^*(\phi_p)$ values found for the major photochemical process; this correlation is presented quantitatively in Figure 31. It follows that nonradiative deactivation exhibits the same mechanistic properties

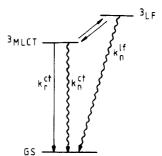
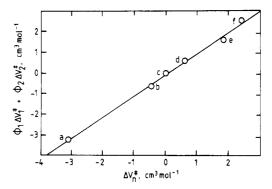



Figure 30. Model describing the proposed mechanism for decay of the MLCT state of $\operatorname{Ru}(\operatorname{bpy})_3^{3^+}$ and related complexes.³⁵⁴

Figure 31. Plot of $\phi_1 \Delta V_1^* + \phi_2 \Delta V_2^* \text{ vs } \Delta V^*(k_n)$ for the photosolvolysis of Rh(NH₃)₅Cl²⁺ and Rh(NH₃)₅Br²⁺ in various solvents.²⁵ Cl: (a) D₂O; (b) formamide; (c) DMSO; (d) DMF. Br: (e) H₂O; (f) D₂O.

as the photochemical process, which points at the socalled "strong coupling" of k_p and k_n .

The emission spectra and lifetimes of the Ir(III) complexes (entries 1016 and 1017) exhibit characteristic pressure dependencies, from which it was concluded that the MLCT and LF states have a volume difference of ca. 4 cm³ mol⁻¹. Finally, the ΔV^* data reported for the nonradiative deactivation of a series of Ni(II) complexes (entries 1019–1024) are all significantly negative. The lowest excited state is tetrahedral for these complexes; it has a larger partial molar volume than the more tightly solvated square-planar ground state. It follows that the transition state for the nonradiative decay resembles the ground state in geometry.

We conclude from the discussion in this section by stating the expectation that pressure effects can be used to study the dynamics of excited-state species and that they will contribute to the mechanistic understanding of photoreactions. It is not surprising that in some cases such effects have introduced ambiguities into the existing understanding of the systems, and alternative possibilities must be considered. Naturally it should be kept in mind that ΔV^* data alone cannot provide a definite description of an excited-state mechanism. Some of the difficulties lie in the unknown partial molar volume of excited-state species and the separation of intrinsic and solvational contributions toward ΔV^* .

H. Bioinorganic Reactions

A number of reviews have been published on the effect of pressure on biophysical and biochemical processes.^{4,358-365} In this section we will review the work performed on bioinorganic systems, with the emphasis on those where a chemical reaction or process occurs.

It is a well-known fact that the structure and dynamic properties of biochemical systems can be modified by pressure. In general, oligomeric proteins tend to dissociate under pressure.³⁶⁰ Relevant for this review are the heme proteins, since covalent bonds are formed and broken during the reaction of ligand binding. In addition, the electronic configuration of the central ion atom plays an important role in spin equilibrations and redox reactions. All the mentioned processes should exhibit characteristic pressure dependencies that can once again be expressed in terms of the thermodynamic and kinetic volume parameters, viz., ΔV and ΔV^* , respectively.

Pressure Effects on Proteins

The quaternary structure of many proteins is very sensitive to pressure.³⁶²⁻³⁶⁵ In general, the volume of a protein consists of three contributions arising from the constitutive volume of the atoms, the void volume that is due to imperfect packing of the atoms, and the decrease in volume due to the hydration of the peptide bonds and the amino acid residues. The partial specific volume of a protein can be calculated from the constitutive atomic volumes, which indicates that the last two contributions are small or partially cancel each other. The compressibility of a globular protein is smaller than that usually observed for liquids and solid polymers, but larger than those of metals and covalent solids. This has been interpreted in terms of the solid-like interior of a protein. In addition, pressure can induce protein denaturation, which is accompanied by a small volume change usually less than 1% of the protein volume (ranging between 1×10^4 and 2×10^4 cm³ mol⁻¹). Pressure may also induce localized conformational changes, and these will be discussed separately. In many cases, pressure disrupts protein-protein interaction, and this is then accompanied by large reaction volumes, 364,365 for instance, $\Delta \bar{V}$ for the ribosome subunit interaction is 250 cm³ mol⁻¹.³⁶⁶ The main effects in the pressure range up to 2 kbar are to be expected on small localized conformational changes in proteins and protein-protein interactions.³⁵⁸

Iron Spin Equilibria

Changes in the spin state of iron centers in biological molecules have in general been suggested to account for specific binding properties of such molecular units.^{358,361} In principle, such spin changes should be accompanied by significant volume changes, and so have stimulated the application of high-pressure techniques. For instance, the Fe(II) center in deoxyhemoglobin is in the high-spin state (designated as tense), whereas in oxyhemoglobin it is in the low-spin state (designated as relaxed). In the Fe(III) derivatives of these compounds (methemoglobin), the high-spin and low-spin states may be in a true thermal equilibrium under certain conditions.³⁵⁸

Measurements on model systems indicate that the spin-state change of Ni(II) complexes from high spin to low spin during an increase in coordination number from 4 to 6 is accompanied by a volume decrease (entries 484-495). A series of Fe(II) complexes (entries 940-955) exhibits a significant increase in volume for the low-spin/high-spin transition. Similar effects are

TABLE V. Activation and Reaction Volumes (in cm³ mol⁻¹) for the Binding of Ligands to Heme Proteins

reaction	ΔV^*	$\Delta ar{V}$	ref
heme + CO	+2.0		375
sperm whale myoglobin $+ O_2$	+7.8	-2.9	376
sperm whale myoglobin + CO	-8.9		376
bovine hemoglobin $+ O_2$	+5.2		376
bovine hemoglobin + CO (fast)	-0.9		376
bovine hemoglobin + CO (slow)	-22.1		376
sperm whale metmyoglobin + N_3^-	+4	-9.6	369, 377
sperm whale metmyoglobin + F-		-3.3	377
sperm whale metmyoglobin + HCOO-		+7.5	377
sperm whale metmyoglobin + imidazole	+8	0	369, 377
sperm whale metmyoglobin + OH ⁻		+11.0	377
horse metmyoglobin + N_3^-	+11	-5	369
horse metmyoglobin + imidazole	+14	+10	369

therefore expected to show up in the spin equilibria of heme proteins. Reaction 60 was studied by several

metmyoglobin-L (HS) \rightleftharpoons metmyoglobin-L (LS) (60)

groups for sperm whale metmyoglobin and $L = H_2O$, OH⁻, N₃⁻, imidazole, and CN⁻. Values of $\Delta \bar{V}$ for $L = N_3^-$ are -12.5,³⁶⁷ -15,³⁶⁸ and -9 cm³ mol⁻¹.³⁶⁹ Other values reported are³⁶⁹ -3 (L = H₂O), -5 (L = OH⁻), and -12 (L = imidazole) cm³ mol⁻¹. These values correlate with the general trend observed in the entropy changes and are attributable to stereochemical changes of the protein during the spin change. Experimental evidence also suggests that core compression of the porphyrin ring occurs during the spin change as written in (60).³⁷⁰ A reaction volume of -7 cm³ mol⁻¹ was found for human metmyoglobin.³⁷¹ Similar results were reported for the spin change on methemoglobin, viz., -13.3 cm³ mol⁻¹ for carp methemoglobin with $L = N_3^{-.367}$

A number of studies have been done on spin equilibria of other heme proteins. In ferric cytochrome P-450, the low-spin to high-spin transition is accompanied by a volume increase of $16-75 \text{ cm}^3 \text{ mol}^{-1}$, depending on the conditions employed.³⁷² The range of values strongly depends on the pH and reduces to between 35 and 75 cm³ mol⁻¹ for neutral pH. The activation volume for the high-spin to low-spin conversion is close to zero. It was recently shown that the large increase in volume is partly due to the dissociation of the camphor substrate from the active site.³⁷³ A value of 8 cm³ mol⁻¹ was reported for the reaction volume of the LS/HS equilibrium of cytochrome oxidase.³⁷⁴

Ligand Binding

The binding of oxygen and other ligands to heme proteins and model systems has been studied also, in view of the physiological functions of such proteins. A summary of the available data is given in Table V. The value reported for the binding of CO to heme iron was interpreted in terms of an I_d mechanism.³⁷⁵ In glycerol, ΔV^* increases to 14 cm³ mol⁻¹, which points at a diffusion-controlled process. Surprising is the large difference for the binding of CO and O₂ to myoglobin, and no simple interpretation can be offered.³⁷⁶ Similar differences were observed for the reactions of hemoglobin. The biphasic nature of the reaction with CO is attributed to the various quaternary conformations. The data for the metmyoglobin reactions should be interpreted in terms of ligand substitution during which H_2O is the leaving group. This is not the case for the

TABLE VI. Activation and Reaction Volumes (in cm³ mol⁻¹) for the Redox Reactions of Horse Heart Cytochrome c^{350}

	Δ	V*	
reaction	exptl	theor	$\Delta ar{V}$
$Cyt-Fe(III) + Fe(CN)_6^{4-}$	+13	+17	+37
$Cyt-Fe(II) + Co(phen)_3^{2+}$	+8.5	+5.1	+20
Cyt-Fe(III) + ascorbate ²⁻	-11	-1	+6.5

earlier data in Table V, since there is no sixth ligand present prior to the binding of CO and O₂. The interpretation of such data is further complicated by the fact that ligand binding or substitution is usually accompanied by a change in spin state. A complete account of the various arguments for the interpretation of the data is given elsewhere.³⁵⁸ Important in determining the sign and magnitude of ΔV^{\dagger} seems to be the subtle role of the amino side chains packed around the heme.

During the binding of ligands to cytochrome c, the Fe-S bond is broken and iron remains in the low-spin state. ΔV^* for the binding of imidazole and N₃⁻ to horse heart cytochrome c is +20 cm³ mol⁻¹ compared to $\Delta \bar{V}$ values of +7 and -13 cm³ mol⁻¹, respectively. The positive ΔV^* is interpreted in terms of the breakage of the Fe-S bond prior to binding of the ligand.³⁵⁸ Binding of HCN to horseradish peroxidase Fe(III) exhibits a ΔV^* of +1.7 cm³ mol⁻¹, and compensation effects for the ionization of the substrate and transfer of the proton are discussed to account for this small pressure effect.³⁷⁸ In contrast, recombination of CO with the reduced enzyme following photodissociation is characterized by a ΔV^* of -16 cm³ mol⁻¹, which is in good agreement with the reaction of CO with myoglobin.³⁷⁹ The binding of cyanide to chloroperoxidase exhibits ΔV^* and $\Delta \bar{V}$ values of -2.5 and -17 cm³ mol⁻¹, respectively.³⁸⁰ The volume profile is largely determined by the spin transition in this case.

Redox Reactions of Heme Proteins

Heremans and co-workers^{50,381} have studied the pressure dependence of a series of OSET reactions. Their results are summarized in Table VI. They clearly demonstrate that the trend in ΔV^* parallels that in ΔV , from which the important conclusion is reached that ΔV^* for electron-transfer processes can only be interpreted more meaningfully when the reaction volume is known. The theoretically predicted ΔV^* values are remarkably close to the experimental values for the first two entries. The positive sign of these values is in agreement with that for related inorganic systems in Table I. The data for the reduction by ascorbate is more difficult to interpret due to the interference of a deprotonation equilibrium.

Redox reactions of horseradish peroxidase (HRP) can be summarized as in (61), where R^* represents a free

HRP (Fe^{III}) + $H_2O_2 \rightleftharpoons$ compound I (Fe^{IV} + R*) + H_2O

compound I + A \rightleftharpoons compound II (Fe^{IV}) + A⁺

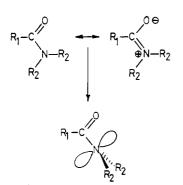
compound II (Fe^{IV}) + A \rightleftharpoons HRP (Fe^{III}) + A⁺ (61)

radical species and A a reducing agent. The formation of compound I exhibits a ΔV^* of -1.5 cm³ mol⁻¹,³⁷⁸

compared to a series of positive and negative values for the reaction of compound II with several reductants.³⁸² The value of $+6.7 \text{ cm}^3 \text{ mol}^{-1}$ for the reaction with Fe- $(CN)_6^{4-}$ is in close agreement with that reported in Table VI and is probably determined by the same factors as the reaction volume. Balny et al.⁵⁸ reported a two-phase behavior for the reaction of cytochrome cperoxidase with EtOH; the fast reaction with $\Delta V^* = +9$ $cm^3 mol^{-1}$ is ascribed to the formation of compound I, and the slow reaction with $\Delta V^* = +14 \text{ cm}^3 \text{ mol}^{-1}$ is attributed to the change in spin state of the protein. In a recent study,³⁸³ the fast reaction was studied in more detail. ΔV^* values ranging from +3 to +15 cm³ mol⁻¹ were found for the reaction in H_2O , and values of +18 to $+30 \text{ cm}^3 \text{ mol}^{-1}$ were found for the reaction in 60% DMSO, depending on the temperature employed. The largest ΔV^* of +30 cm³ mol⁻¹ at -23 °C could be split into a reaction volume of $+11 \text{ cm}^3 \text{ mol}^{-1}$ for the formation of the precursor complex and an activation volume of $+19 \text{ cm}^3 \text{ mol}^{-1}$ for the rate-determining step. Such large values suggest extensive structural rearrangements that need not be limited to the neighborhood of the heme alone.

3. Activation Volumes of Organic Reactions

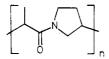
A. General Remarks


As in the previous section, the references in the three main Tables VII–IX are numbered consecutively, followed by further numbers in the text. Investigators in inorganic laboratories have in many instances measured both activation and reaction volumes of the same reactions, so that it made sense to tabulate them in side-by-side columns. In the present section, this correlation is often not available, and hence reaction volumes (of all types) have been grouped separately as section 5.

B. The Data in Tabular Form

Activation volumes for reactions of organic compounds are listed in Table VII.

C. Bond Rotations (Entries 1–295)


A large number of data have been reported concerning the C-N bond rotation in amides; especially Lüdemann and his co-workers deserve credit for this. The activation volumes are invariably positive: the coalescence temperatures are raised by increasing the pressure. ΔV_0^* varies between about +2 and +10 cm³ mol⁻¹. Two possible reasons for this effect have been advanced. Lüdemann himself favors the opinion⁶⁵ that the molecule needs some open space if it is going to carry out a rotation; in other words, such a motion cannot be totally coordinated with surrounding molecules such as would be necessary to avoid expansion. We have noted¹ that the perpendicular transition state has a reduced dipole moment since the zwitterionic structure no longer can make a contribution, and a less dipolar structure will allow nearby molecules greater freedom to expand ("electrorelaxation", as opposed to "electrostriction"). It has not been possible ro reach

a clear conclusion in this matter. It should in principle be possible to make a direct comparison of the partial volumes of the two states, planar and perpendicular, by comparing isomeric bicyclic amides with the nitrogen atom either adjacent to or at the bridgehead atom position, respectively, as in

Unfortunately, the former type of compound is represented by only very few examples,⁷²⁰ exactly because the absence of resonance makes it very unstable, for example, to polyamide formation, which generates planar amido functions:

The absence of any measurable pressure effect on the rotation rate of the C-CO bond in α -naphthoic acid amides would seem to support the argument that no great volume changes occur if the rotation is not accompanied by a large change in dipole (entries 116–119). On the other hand, however, Lüdemann's argument has gained strength from studies of the pressure effect on conformational equilibrium (entries 120-128 and part 5A). It has been found that pressure tends to favor the more crowded gauche forms and eclipsed conformations; by analogy, in the amides it should disfavor the perpendicular transition states. But the conformational cases show volume changes that tend to be smaller than the activation volumes seen in amide rotations, and at present our opinion is that both effects play roles that can probably not be quantitatively dissected in the near future.

A large number of data have been accumulated for the Z-E isomerization rates of azo compounds, and these data, too, have generated some controversy. It is generally believed³⁹⁸ that the reaction of symmetrical azobenzenes proceeds via an inversion mechanism in which one of the nitrogen atoms becomes sp hybridized. The polarity should remain essentially unchanged during activation, and the pressure effect should be small, as is observed. As has been stated,⁷²¹ the polarity must decrease slightly, but ΔV^* is found to be negative; only the azobenzene capped crown ether has a positive value. This probably reflects the expansion of the crown ether cavity during activation.

A more serious disagreement concerns the 4-donor-4'-acceptor substituted azobenzenes such as 4-(di-

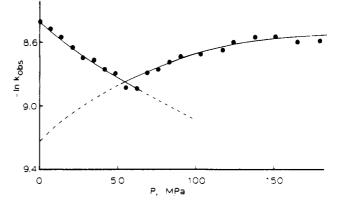


Figure 32. Effect of pressure on the rate of displacement of a pyridine by piperidine from the *p*-methoxybenzyl derivative.

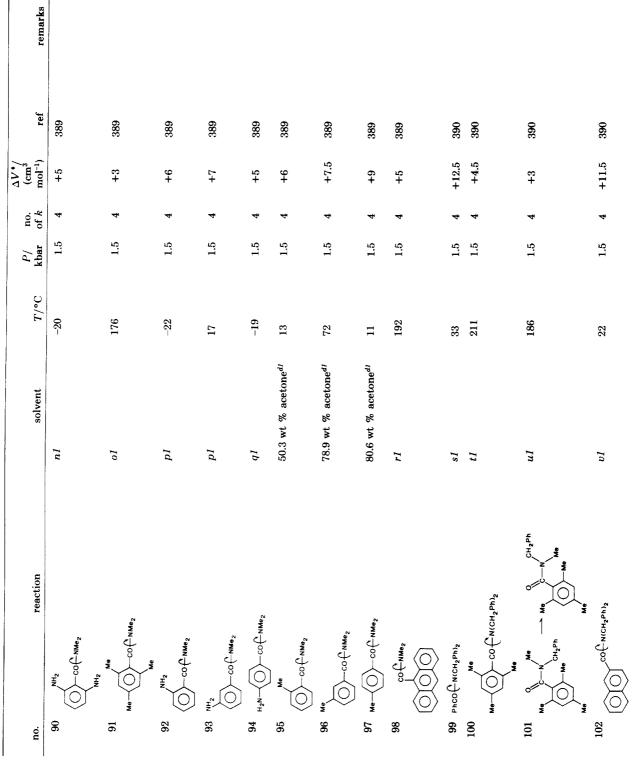
methylamino)-4'-nitroazobenzene. In that case, pressure enhances the reaction only slightly in some solvents such as hexane, but much more strongly in others such as benzene and *p*-dioxane; the rate constants at ambient pressure are also faster in such solvents. One of us³⁹⁷ has interpreted these findings as indications of the onset of the rotational mechanism in which the N=N π bond breaks to form an essentially zwitterionic transition state. This view is supported by an unusual temperature dependence of the activation volume and by curved Arrhenius plots.^{399,403} On the other hand, Nishimura⁴⁰² has interpreted the results by assuming an inversion transition state alone, but with a variable polarity, and supported this view with the allegation that the reaction volume was even more negative than the activation volume (in other words, that the latter simply foreshadowed the former). But the measurements do not inspire confidence. The dilatometric one is based on evidently unstated assumptions, and in any case, the results show unacceptably wide error limits; in the other, the pressure dependence of the photostationary state composition is equated to the equilibrium dependence.

This same compound has also been found to be a rare example of a maximum in an $\ln k$ vs P plot (Figure 32); this is observed when the solvent is triacetin. A *minimum* can be accommodated as a result of two competing mechanisms: a fast one that is retarded by pressure, and a slow one that is enhanced by it (section 3G). To date, a *maximum* has been observed in solution only in a *bimolecular* displacement reaction that was thought to become diffusion-limited at extreme pressure.⁷²² The incursion of a viscosity restriction of a *unimolecular* reaction in the slow-rate domain and at moderate pressures is bound to have important repercussions (see also section 3D).

The olefins studied by Sueishi⁴⁰⁹ represent another interesting group. Z-E isomerization in this case might be expected to involve bond extension in the transition state. Indeed, small positive activation volumes and small solvent effects are found.

In entries 296-310, both the ring closures and openings are retarded by pressure. The large, positive value of ΔV^* for closure is clearly related to the neutralization of charge. The apparent fact that the ring opening of the carboxylic acid is also retarded by pressure is remarkable and deserves further study.⁴¹¹

	reaction	solvent	$T/^{\circ}C$	$P/{ m kbar}$	no. of <i>k</i>	$\Delta V^*/$ $(\mathrm{cm}^3 \mathrm{mol}^{-1})$	ref	remarks
нсо⊖име₂		al	127	2.0	5	+9.6	384	
			121-128 ^{ct}	1.5	4	+7.8	385	
			127-130 ^{cr}	0.1	4 .	+ 9.8	385	
		80 vol oz CD CNdl	194_194	0.4	، د	19.4 101	000 206	
			101-471	0 H	* *	1.0.6	000 101	
			140 1596	0, 1 1	* •	0.64	200 200	
			1001-641	1.0	4	+0.0	50 20 20	
		$\frac{1}{100} \frac{1}{100} \frac{1}$	137-152 ^{c1}			+1.6	65 2	
			101 1 201			+ 2.0	8	
		$39.7 \text{ wr } \% D_2 O_{-1}$	137-152			+3.0	<u>6</u> 9	
		91.2 wt % $D_2 O_3^{m}$	$137 - 152^{ct}$			+6.4	65	
		81.6 wt % $D_2 O^{a_1}$	137-152			+7.1	65	
		53.2 wt % D ₂ O ^{d1}	$137 - 152^{cl}$			+8.3	65	
i		$10.5 \text{ wt } \% \text{D}_2 \text{O}^{d1}$	137-152 ^{c1}			+8.4	65	
нсо Син,		f1	37	1.5	4	+2.3	386	
,		gl	59	1.5	4	+3.0	387	
		[J]	99	1.5	4	+3.0	387	
		al	73	2 I 1	• •	195	100	
		a1 a1	70	1. L	* -	10.0 1 1 1	100	
		81	61	0.1	1	T4.L	100	
Me CO C NMe2		al	77	2.0	5	+10.3	384	
•		neat	78-84 ^{c1}	1.5	4	+7.6	385	
		bI	67-71 ^{c1}	1.5	4	+5.5	385	
		80 vol % C ₆ D ₆ ^{d1}	69-78c1	1.5	4	+9.0	385	
		el	74-83 ^{c1}	2.0	5	+10.0	385	
		80 vol % (CD ₃) ₂ SO ^{d1}	82–87 ^{c1}	1.5	4	+6.8	385	
		80 vol % CD _a CN ^{d1}	74-81 ^{c1}	1.5	4	+9.3	385	
		80 vol % CD, OD ^{d1}	$91-97^{cl}$	1.5	4	+7.6	385	
		80 vol % $D_n O^{dI}$	$69-101^{el}$	1.5	4	+1.6	385	
		95.6 wt % D.Odi	77 - 109c1	51	•	+03	35	
			77_10961	о н н	• •	10.0	200	
			-201-11	1.0	4 -	-1-0 -1	8,	
		$00.0 \text{ WL } \approx 10^{2} \text{ O}^{-1}$	102-11	1.0	4	10.0	00	
		$43.4 \text{ wt } \% \text{D}_2 \text{O}^{41}$	77-102	1.5	4	+5.9	65	
		$22.4 \text{ wt } \% \text{D}_2 \text{O}^{\alpha_1}$	77-102°	1.5	4	+7.0	65	
		neat	$77-102^{e1}$	1.5	4	+7.6	65	
		98 wt % acetone ^{d1}	$77-102^{c1}$			+10.0	65	
		95 wt % acetone ^{d1}	77-102c1			+10.2	65	
		70 wt % acatoma ^{d1}	77-10961			1001	29	
		For the decount	77 10961			0.01	33	
						+ 10.3	60	
		38.5 wt % acetone.	1.1-102			+10.3	65	
		6.8 wt % acetone ^{d1}	$77-102^{c1}$			+8.5	65	
		98 wt % MeOH ^{d1}	$77-102^{c1}$			+7.4	65	
		79.2 wt % MeOH ^{d1}	77-109el			+7.6	65	
			07 10761				14000	
			01_101 01_101e1			10.0	2000	[INALDF] = 0.14 mol/kg
¢		30 WL 70 120	a/-10/			+3.8	300	$x_{\text{NaBr}} = 0.0003$
Meco-UH2		iI	67	1.5	4	+2.2	386	
		00 mt of D'Uqi	67_09cl			101	20	
CICOL MMAS			26 10 67 00el			1.27	85	
		00.2 WL / D20	26-10 67 0961			0.7 1	6	
			27_09cl			9.0-1 7 - 1	60	
			67 09cl			0.01	35	


		100 00			001	ц	•
	10.8 wt % D ₂ 0 neat	67-92 ^{c1}			+9.6	65 65	5 wt % HMDSiO
	98 wt % D ₂ O ^{d1}	52–92 ^{c1}			+2.5	65	
Z	95 wt % D ₂ O ^{d1}	52-92 ^{c1}			+3.2	65	
	90 wt % $D_2 O^{dI}$	52-92 ^{c1}			+6.0	65	
	80.1 wt % $D_2 O^{d_1}$	52-92 ^{c1}			+7.0	65	
	41.1 wt % D_2O^{d1}	52-92 ^{c1}			+8.2	65	
×	5 wt % D ₂ 0 ²¹	52-92 ^{ct} 5 <u>9-</u> 92 ^{ct}			+8.1 +8.3	8 8	
<						2	
n-Bucot NMe2	$39 \text{ wt } \% D_2^{-1} 0_{31}^{-1}$				+4.0 • • •	60	
	$97.7 \text{ wt } \% D_2 O_2$	62-9/ ^{cz}			+0.1	50 2	
	$\begin{array}{c} 95 \text{ wt } \% D_2 U^{a_1} \\ 0.1 1 \% D_2 U^{a_1} \end{array}$	62-97 ^{cz}			0.0+ - 1	00 6 6	
	$80.1 \text{ wt} \% \text{D}_2^{\text{O}}$	-20 02d			0.14	00 66	
					10.4 10.4	00 65	
	13.4 WT % D20	69-07cl			081	00 79	F ut & HMDSiD
	TICAL					8	
MeCO (N() - Pr)Me	k1	38-55 ^{c1}	1.5	4	+10.6	386	
	al	27	2.0	5	+8.5	384	
	<i>b1</i>	4-7 ^{c1}	1.5	4	+9.6	385	
	ji	$23-29^{cl}$	1.5	4	+8.1	385	
	el	$13-20^{cl}$	2.0	5	+8.6	385	
	78.2 wt % acetone- d_6^{dl}	13	1.5	4	+7.5	389	
	80 vol % CD ₃ CN ^{d1}	$25 - 30^{c1}$	1.5	4	+9.5	385	
	80 vol % CD ₃ OD ^{d1}	38-45 ^{c1}	1.5	4	+12.9	385	
	99.4 wt % D _o O ^{d1}	32–77 ^{c1}	1.5	4	+3.0	65	
	97.2 wt % D,0 ^{d1}	32-77c1	1.5	4	+4.5	65	
	95.4 wt % D _o O ^{d1}	32-77 ^{c1}	1.5	4	+5.5	65	
	90.7 wt % D ₂ O ^{d1}	32–77 ^{c1}	1.5	4	+6.8	65	
	80.7 wt % D ₀ ^d	32-77 ^{c1}	1.5	4	+8.9	65	
	80 vol % D ₂ Õ ^{d1}	$64 - 70^{c1}$	1.5	4	+8.9	385	
	59.9 wt % D_2O^{d1}	32-77 ^{c1}	1.0	e	+8.9	65	
	21 wt % $D_2 \overline{O}^{d1}$	32-77 ^{c1}	1.5	4	+9.0	65	
-	11.4 wt % D_2O^{dI}	32–77 ^{c1}	1.5	4	+8.9	65	
I PhCo ← NEt ₂	II	-1 to 16 ^{c1}	1.5	4	+7.7	386	
Dhco Chui-Pris	ml	-14 to 24 ^{c1}	1.5	4	+5.4	386	
Ū	80.1 wt % acetone- d_6^{dl}	161	1.5	4	+4	389	
		. ,					
CI L	77.9 wt % aretone-d ^{edi}	111	5	4	+7.5	389	
, L				I			
$\bigcirc \bigcirc \frown \bigcirc \bigcirc \bigcirc$							
^u							
g , ome	67 wt % acetone-d ₆ ^{d1}	115	1.5	4	+7.5	389	
C - co f nue.							
OMe NO.	77 6 mt 01 protono d dl	178	15	-	+5 5	380	
	11.0 WT % acetone-a6	1/0	0.1	4	10.01	600	
$\bigcirc \bigcirc \frown co \bigcirc NMe_2$							

vo2

68

88

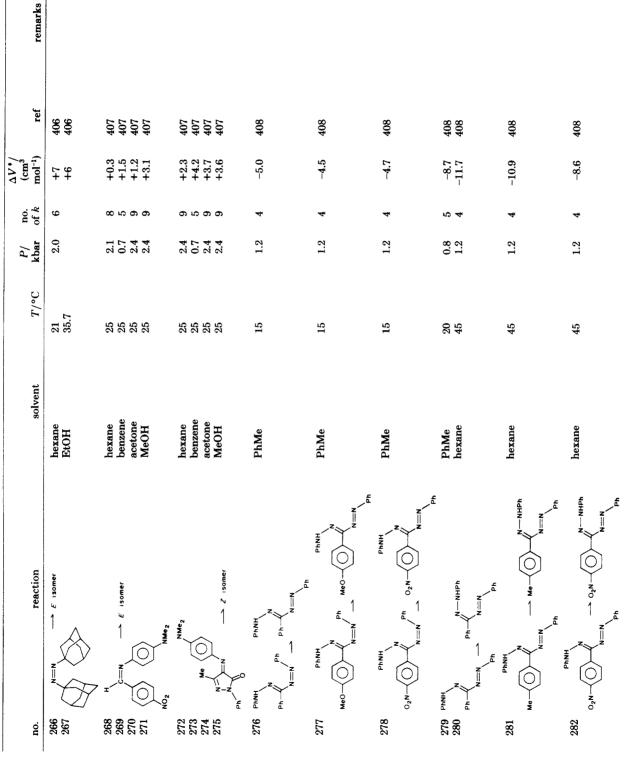
87

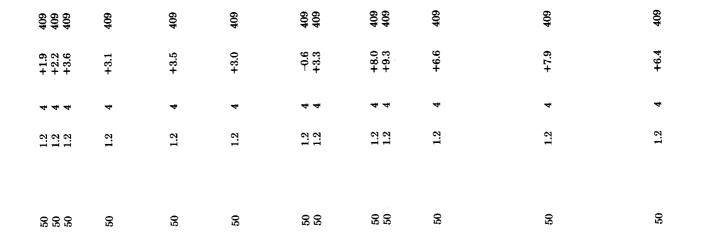
	in the presence of HMDSiO	in the presence of HMDSiO		in the presence of HMDSiO	in the presence of HMDSiO and acetone-d ₆	in the presence of HMDSiO	$\Delta V \leq +0.5 \text{ cm}^3 \text{ mol}^{-1}$	$\Delta V \leq +0.5 \ \mathrm{cm}^3 \ \mathrm{mol}^{-1}$		
390	390	390	390	390	390	390	391	391	392	393
+8.5	+6.5	+7.5	+6.5	+6.5	+6.5	+4.8	+4	L+	+5°2	ရာ
4	4	4	4	4	4	4	4	4	4	5.
1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	73
83	225	62	99	82	81	72	76	62, 59	44	26, 28
wl	80 wt % CHCl ₃ ^{d1}	xI	yI	z1	a2	90 wt % CHCl ₃ ^{d1}	b2	c2	d2	f2
103 cof-NicH2Ph)2	104 co ChicH ₂ Phi ₂	105 cofnue2	106 cofner2	$107 \qquad \bigcirc \qquad \bigcirc \\ \bigcirc \bigcirc \bigcirc \bigcirc \\ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	108 cofn(n-oct)2	$109 \qquad \qquad$	110 H_3^{N} H_3^{N} H_3^{N} H_3^{N} H_3^{N} H_2^{COO}	111 0 Me Me ONHME		113 $ueo - O - ch_2 ch + u O + ch^2 ch^2 ch^2 ch^2 ch^2 ch^2 ch^2 ch^2$

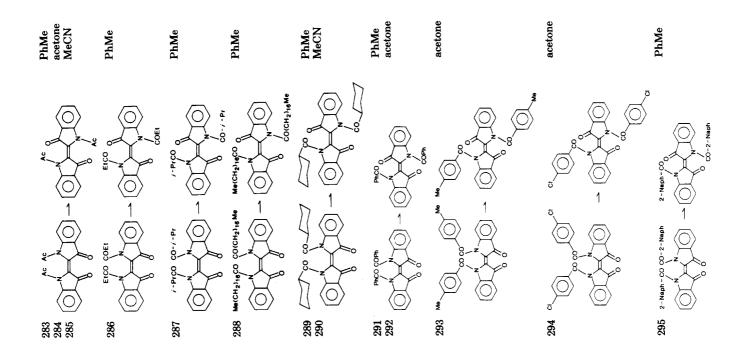
remarks		in the presence of HMDSiO	in the presence of HMDSiO	in the presence of HMDSiO	82 82 82 82 82 82 82 82 82 82 82 82 82 8
ref	394 394	395 395	395	395	3399 3399 3399 3399 3399 3399 3399 339
$\Delta V^*/$ $(\mathrm{cm}^3 \mathrm{mol}^{-1})$	+8.9 +7.7	0 0	0	0	$ \begin{array}{c} -1.3 \\ -1.0 \\ -3.1 \\ -1.0 \\ -1.0 \\ -1.2 \\ -1.2 \\ -2.5 \\ -2.5 \\ -2.5 \\ -2.5 \\ -2.5 \\ -2.5 \\ -2.5 \\ -2.5 \\ -1.7 \\ -$
no. of <i>k</i>	<u>ى</u> م	4 4	4	4	10 00 00 00 00 00 00 00 00 00 00 00 00 0
P/ kbar o	67 67	1.5 1.5	1.5	1.5	444.44 44.70 44.70 44.70 44.70 1111 111 111 111 111 111 111 111 111
T/°C	-12 to -4 ^{e1} -15 to -8 ^{e1}	20 20	19	31	⁴ ⁴ ⁶ ⁶ ⁴ ⁴ ⁶
solvent	g2 h2	71 wt % CHCl ₃ ^{d1} i2	2j	90 wt % CHCl ₃ d	C ₆ D ₁₁ CD ₃ C ₆ D ₁₁ CD ₃ CS ₂ CS ₂
reaction	× Z=	NET2	2, 14 - F1, N	NICH2Ph)2	$\begin{bmatrix} -1 & E \\ -1 & E \\$
no.		911	811	6II	$ \begin{bmatrix} 120 \\ 1225 \\ 1226 $

k2 k2	800 800 800 800 800 800 800 800 800 800	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	k2 k2 k2
401 401	402 402 402 402 402 402 402 402 402 402	402 402 402 398 398 398 398 398 398	397 397, 399 397, 399 397, 399 397, 399 397 399 399 399
-4.2 -3.7	4		-1.2 -2.6 -5.3 -6.4 -6.5 -7.9 -7.9 -17.9 -17.9 -0.7 -0.7 -0.7
5	цэ	4444 40 00 00	ფლფფადი დაფ ა
1.2	1.2	2.1 2.1 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.1	21 21 21 21 21 21 21 21 21 21 21 21
70	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 4 4 4 9 4 4 2 2 2 2 2 2 2 2 2	***************************************
PhMe PhCl	hexane CCI4 PhMe PhMe MeCN MeCN hexane hexane CCI4 PhMe CCI4 CHCI3 CHCI3 CHCI3 DMSO	MeOH MeCN MeCN MeCN MeOH MeOH	hexane PhH CH ₂ Cl ₂ CH ₂ ClCH ₂ Cl CH ₂ ClCH ₂ Cl acetone PhH acetone betone BtOH MeOH
	$ I_{12} I_{12} $		(1) = (1)

144 145


169


170 171 172 173 173 174 175 176 178 179 180


TABLE VII (Continued)							
			/d	ou	$\Delta V^{\bullet}/$		
no. reaction	solvent	$T^{\circ}C$	kbar	of k	mol ⁻¹)	ref	remarks
181 N=N - E isomer	EtOH	25	2.1	× ×	-2.7	399	[EtONa] = 0.02-0.1 mol/L
	HeOn	20 95	1.2	xox	-18.0	399 200	[MeONa] = 0.02-0.1 mol/L
)]	0°H	25	2.1	o xo	-17.3	668 309	[NaOH] = 0.1 mol/L [NaOH] = 0.2 mol/L
185 NMB2 503	H_2^{-0}	25	2.1	œ	-21.1	399	[NaOH] = 0.02 mol/L
186 N=N - Eisomer	hexane	40	2.1	×	-3.0	399	k2
	hexane	50	1.2	5	-7.7	401	k2
	hexane	55	2.4	6	-3.7		k2
	hexane	70	2.1	x 0 •	-7.7	399, 403	:
191		22 07	1.0	4 6	-10.2	402 307	$k2, \Delta V = -12.2$ k9
192	col	40	1.2	- ro	-10.3	401	k2 k2
193	PhH	25	0.6	4	-22.8	402	$k2, \Delta V = -26.0$
194 105	PhH	30	0.8	5	-23.8	399	k2
196	Рън	40 50	1.5 9.1	9 a	-22.0	399	k2 L0
197	PhH	09	2.4	0 0.	-19.5	403 403	RZ b9
198	PhH	70	2.1	00	-19.4	399	k2
199	PhMe	25	1.0	5	-22.1	402	$k2, \Delta V = -24.3$
200	PhMe	25 Sr	1.2	ت ت	-22.0	401	:
201	<i>p</i> -dioxane	62 5	0.6	ດູ	-25.3	402	$k^{2}, \Delta V = -26.9$
203	p-dioxane	40 50	9.1	<u>ه</u> م	-10.0	403	R2 49
204	p-dioxane	80	2.4	റെ	-17.6	403	24 24
205	p-dioxane	70	2.4	6	-19.1	403	k2
206	CHCI,	15	2.1	æ 1	-25.9	397, 399	k2
201	CHCI	15 95	1.2 3 0	<u>ا</u> ن	-30.4	401	k2 10
209	CHCI.	25	0.1 0.1	4	-20.5	01 409	kz b 0 AV = -30 0
210	CH ₂ Cl ₂	25	2.1	• 30	-28.6	397, 399	1
211	CH,CICH,CI	25	2.1	80 -	-27.7	397, 399	1
212 213	THF	07 07	1.0 2 4	4 0	-31.9	402	$k^{2}, \Delta V = -33.8$
214	THF	25	2.4	n 01	-28.1	403 403	к2 К2
215	THF	40	2.4	6	29.4	403	k2
212 212	THT	50	2.4	6 0	-31.7	403	k2
218	o-CeH.Cl.	01	4.7 1 8	n r-	-20.6	403	R2 b9
219	o-C ₆ H ₄ Cl ₂	25	2.4	- n	-21.7	403	k2
220	o-CeHCI2	40	2.4	6	-22.3	403	k2
122	cyclohexanone	25 25	1.8	r 0	-18.2	397	k2
223	acetone i. PrOH	20 95	7.1	xoo	-20.3	397	<i>R2</i> L0
224	EtOH	10	2.4	0 0	-20.0	403 403	K2 k2
225	EtOH	15	8.0	17	-21.3^{l2}	404	k2
220 227	HO13	25 40	2.4	o 0	-22.9	403	k2 4-0
228	EtOH	60	2.4	ით	-28.5	403 403	k2 k2
229	EtOH	20	2.4	6	-31.2	403	k2
230 231	MeOH	10 95	2.4 •	o c	-23.0 95 f	403	k2 10
4 5 1	ITOOW	67	7 -7	מ	č•07_	409	23

$k2$ $k2$ $k2$ $k2, \Delta V^* > 0 \text{ at}$	k2 k2 k2 k2	k2 k2 k2 k2 k2 k2 k2 k2 k2 k2 k2 k2 k2 k	RZ R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2	k2 k2	k2 k2 k2	k2 k2	54 54 54	k2 k2 k2	ΔV = +11.5 (25 °C)
403 403 403 404 404	401 401 401	401 401 401 401	401 401 401 401	401 401 401	401 401 401	401 401 401	401 401 401	401 401 401	405
-26.7 -27.6 -30.4 -19.8 ^{m2} -20.9 ^{m2}	-13.0 -12.1 -24.0	-3.2 -7.1 -12.0 -22.1 -11.2	-8.8 -24.3 -16.9 -17.8 -23.6	$^{-13.7}_{-17.6}$	-6.4 -8.2 -12.0	-8.8 -9.6 -17.6	-11.3 -12.0 -21.9	-8.6 -11.8 -30.8	+6.1
9 9 17 17	4 20 20	പറ പറപ	പറപ്പ പറ	ວະລາວ	ວວວ	ດດ	ດຄ		5
2:4 2:4 8:0 8:0	1.2 1.2 0.9	112 112 112	1.2 1.2 1.2 1.2 1.2 1.2	1.2 1.2 1.2	$1.2 \\ 1.2 \\ 1.2 \\ 1.2$	1.2 1.2 1.2	1.2 1.2 1.2		2.0
30 40 25 55 40	40 40 16	50 16 16 16 16 16 16 16 16 16 16 16 16 16	40 50 15 15	40 15 5	20 20 20	25 25 15	35 40 25	50 25	85
MeOH MeOH MeOH triacetin triacetin	hexane CCl ₄ PhMe	hexane CCI4 PhMe CHCI ₃ hexane	PhMe hexane CCL4 PhMe	hexane CCI4 PhMe	hexane CCI4 PhMe	hexane CCI4 PhMe	hexane CCl ₄ PhMe	hexane PhMe CHCl ₃	heptane
232 233 234 235 235 236		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$246 \bigcirc 0 & 0 \\ 1002 & 1002 & 0 \\ 241 & Me & NMe_2 \\ 249 & 0 & 0 & E \text{ isomer} \\ 249 & 0 & 0 & 0 \\ 1002 & 0$	$250 \text{Me} \text{N=N} \text{Me} \text{F isomer}$ $251 \text{Me}_2 \text{Me}_2 \text{No}_2$	253 cl $Nime_2$ Nim_2 $Nime_2$ $Nime_2$ $Nime_2$ $Nime_2$ $Nime_2$ $Nime_2$ $Nime$	$256 \qquad N=N \qquad CI \qquad C$	259 ct N=N ct E isomer $261 O O O O O O O O O$	262 $N=N$ E isomer 264 O O $N=0$ D N	265 N=N - E isomer
8 8 8 8 8 8	888	66 66 6 6 6	555 S	52 52	25 25	25 25	888	26 26 26 26	26

(Continued)	
ΠΛ	
ABLE	

(Continued)	
TABLE VII	

	remarks														02	p_{2}^{2}	92								$\Delta V = +33.$	at $P > 0.2$ kbar, $\Delta V^* = \pm 0$	6H - 17											
	ref	410	410	410	410	410	410	410	410	411	411	411	411	411	412	413	413	414	415		416	416	410	416	417		418	418	418	418	418	418 419	419	419		420	420 420	406
$\Delta V^*/$ (cm ³	mol ⁻¹)	+12.8	+9.4	+9.8 1.6.5	+151	+19.5	+17.5	+21.2	+15.6	+1.2	+4.7	+2.1	+1.4 +0.8	+4.6	$+5.7^{n2}$	+10.0	+10.8	±11	+21		$+10.5^{n2}$	+'/.y" 111 1n2	+11.1	$+10.1^{n2}$	+60		+16.4	+18.8	+16.5	+17.8	+19.0	+21.1	+4.3	+4.6		+8.3	+7.0 +8.1	+18
no.	ot <i>k</i>	4.	4	4 4	7	4 4	4	4	4	4	4 -	4 -	* 4	1 4	5	ы С	، م	4	4		ഹം	<u>ہ</u> م	0 9	с 1	21		5	5	5	5	ເດ	ററ	s co	4		4	5 5	9
P/	kbar	1.2	0.4 1	1.2 0 8	0.0	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1 9 1	1.2	10.1	10.1	10.1	9.0	5		2.3	2.3	6.7 6 6	2.3	0.5		4.3	4.3	4.3	3.9	3.9	3.9 6.2	4.2	4.2		2.9	0.0 0.9	2
E	D_{a}/L	30	90 90	00 90	80	900	30	30	30	30	88	00 00	00	80	130	130	130	0.61	130		140	100	100	200	25		50	50	50	60	60	60 55	55	55		50	30 50	21
-	solvent	hexane	cyclonexane	p-uloxane	CHCI	acetone	DMF	MeCN	DMSO	CHCI		CII2UI2 acetone	MeCN	DMSO		PhCI	PhUI 9 iconnourl	z-isopropyi- 1.3-dioxolane	2-(cyclohexyloxy)-	tetrahydropyran	heptane	nepuane hentene	hentene	hentane	CO2		octane	<i>i</i> -PrPh	t-BuPh	octane	i-PrPh	i-PrPh	PhCl	<i>i</i> -PrPh		styrene	CH ₂ —C(Me)COOMe CH ₅ —C(Me)COOMe	hexane
	reaction	Me Mo O, Me Me)	Me NO2 M	8				Me Me Me					$(t-BuO)_2 \rightarrow 2t-BuO^{\bullet}$										$(t-BuNO)_2 \rightarrow 2t-BuNO$		$PhN=NCPh_3 \rightarrow Ph^{\bullet} + N_3 + \bullet CPh_3$			$O_2N \longrightarrow O_3N \longrightarrow O_3NPh^2 + N_2 + CPh_3$		$PhCMe_{0}N=NCMe_{0}Ph \rightarrow 2PhCMe_{0} + N_{0}$		Me → () → CMe ₂ → () → - Me →	$2M_{0} - OM_{0}^{2} + N_{2}$	$Me_{2}C(CN)N=NC(CN)Me_{2} \rightarrow 0Me_{2}C'N' (f_{roo}) + N$		$ \iint_{N=N} \bigwedge_{2} \longrightarrow_{2} \iint_{2} \cdot H_{2} $
i	no.	296 207	167	2007	308	301	302	303	304	305	305	308	309	310	311	312	616 616	110	315	c Fo	316	318	319	320	321		322	323	324		326		329	330		331	332 333	334

r2	r2																																											s2			ionic strength 0.5 mol/L,	AV = -3.3 IOI LIE reverse reaction	
421 421	421	421	421	422	007	109	07#		424 195	101	440	420 495	07E	196	426	496	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	421	427	421	427	427	427	427	429	430	431	432	345		
+5.4 +5.5	+8.5	+7.5	+6.9	+1.6		+10.3 +11 E	0.111	2-01-		T 1.1	12.0	+0.4	1 1.4 1 E On2	10.3 11 9n2	+6 9n2	+4 4n2	+9.2"	$+15.2^{n2}$	+11.6 ⁿ²	$+10.1^{n2}$	$+14.6^{n2}$	$+6.2^{n2}$	+7.6 ⁿ²	$+10.7^{n2}$	+9.2 ⁿ²	+8.6 ⁿ²	$+5.2^{n2}$	+7.1 ⁿ²	+6.4 ⁿ²	$+6.3^{n_2}$	$+7.5^{n_2}$	+6.7"	$+9.3^{n_2}$	$+13.0^{n2}$	$+5.5^{m}$	+4.3	+5.9	+6.1	+7.0	+6.1	+9.4	+13.4	+22.3	-3.5^{n2}	+9.9	+31	+6.4		
ოო	ŝ	4	e	4	C	- u	5 6		4 U	יכ	ດເ	с n		4 0	7	1 07) er:	. et	,) m) en	c:		0	က	e	2	3	2	en	က	er i	ი.	م ا		4			ო	4	er	က	9	9	ũ	5	5		
ოო	ŝ	e	2	9.8	L	0.0	7 10	0.0		4 0	N 0	N C	4 0	•••) er:					ന	ŝ	3	en	e	e	e	ŝ	က	en (م	n	en	e	en	e	2	10	e	0.9			
78 88	64	64	64	70	¢,	90	90	3 8	8 5	2 8	8 8	90 106	00	00	140	200	120	150	500	120	140	180	200	120	140	200	100	130	200	100	130	200	100	120	200	95-200	80-200	100-200	100 - 200	80-200	120 - 200	143 - 230	200	170	60	395	25		
PhMe PhCN	PhMe	PhCN	PhCH0	PhMe		INIECIN	DLMC		FRUI hentene	nepuane	neptane	heptane Lontone	uepuane indedecent	isododecane	isododecane	isododecene	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	isododecane	PhOMe	PhCI	neat	H_2O		
						2002											5tCO•)																ġ		bonate	5	Ę	5 E										

335	$\bigvee_{N=N}^{M0} \stackrel{M0}{\longrightarrow} 2 \stackrel{M0}{\longrightarrow} + N_2$	EtOH
336 337	$v_{\rm N}$ + $v_{\rm N}$ + $v_{\rm N}$	PhMe PhCN
339 339	$\frac{1}{2}$	PhMe PhCN PhCN
341	COCCI COCCI	PhMe
342 343	000-00-000-000 - 2/100 + 2002	MeCN PhH
344 345 346	$PhCOOOCOMe \rightarrow [PhCOO"OCOMe]_{age}$ t-BuCOOO-t-Bu \rightarrow t-Bu' + CO ₂ + t-BuO'	PhMe PhCl heptane
347 348 349		heptane heptane heptane
350 351 352		isododecane isododecane isododecane
353 354	t -BuCOOOCMe ₂ Et $\rightarrow t$ -Bu [•] + CO ₂ + Me ₂ EtCO [•]	isododecane isododecane
356 356 357 358	<i>t</i> -BuCOOOCMe(<i>n</i> -Pr)(<i>n</i> -Bu) → <i>t</i> -Bu' + CO ₂ + Me(<i>n</i> -Pr)(<i>n</i> -Bu)CO	isododecane isododecane isododecane isododecane
359 360 361	S	isododecane isododecane isododecane
362 363 264	t-Bu* + CO ₂ + (i-Pent)Me2CO*	isododecane isododecane
365 365	$Me(Et)(n-Pent)C - CO_2 + t-BuO$	isododecane isododecane isododecane
367 368	$Me(Et)(n-Pent)CCOOOCMe_2(Et) \rightarrow Me(Et)(n-Pent)C^{\bullet} + CO_2 + Me_2(Et)CO^{\bullet}$	isododecane isododecane
371 371	$\begin{array}{l} Me(Et)(n\text{-}Pent)CCOOOCMe_2(i\text{-}Pent) \rightarrow \\ Me(Et)(n\text{-}Pent)C^{\bullet} + CO_2 + Me_2(i\text{-}Pent)CO^{\bullet} \end{array}$	isododecane isododecane isododecane
373 373 374	decomposition of dicyclohexyl peroxydicarbonate decomposition of n -C,H ₁₆ C000C0- n -C,H ₁₅	isododecane isododecane isododecane
375 376		isododecane isododecane
377 378	decomposition of decomposition of	isododecane isododecane
3780 378c 379	decompositio decompositio Me ₃ SiOOCPI	isododecane PhOMe
380 381 382	Me ₃ SiO [•] + [•] OCPh ₃ Ph ₂ O ^{−−} C [−] NCH ₂ Ph → Ph ₂ C(CN)CH ₂ Ph PhCH ₂ CH ₂ Ph → 2PhMe + PhCH−CHPh H ₂ CO ₃ → H ₂ O + CO ₂	PhCl neat H ₂ O

406

+17

6

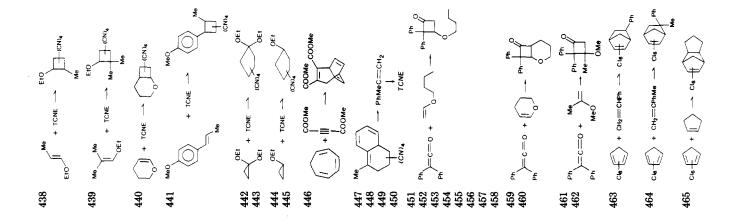
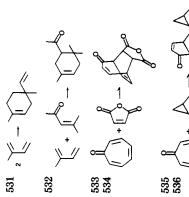

TABLE	IABLE VII (Continued)							
2	montron	solution	Jo/L	P/	no. Af b	$\Delta V^*/$ (cm ³)	je T	
	ICAUMU		N / T	VUGI	2 10	1 1011	101	1 CHINGI VS
383	MeCOCH ₂ C(OH)Me ₂ → 2MeCOMe	H_2O	25	4	œ	+6.9	433	[NaOH] = 0.1 mol/L
384	$\sim CH_{3}CH_{2}$ + CH_{2} - $CH_{2} \rightarrow propagation$	neat	132-189	1.8	9	-25.5	434, 435	
385	$-CH_2CHPh^* + CH_2 = CHPh \rightarrow propagation$	neat	22	2.1	4	-18.6	436	
386		H_2^{0}	25	7.7	ں م	-18.7	437	t2
381		H ₂ O	67	1.1	n N	-11.9	431	nz Ŭ
288 288 200 200 200 200 200 200 200 200		H ₂ U	20 56	7.7	ъ	-10.3	437	20
300	\mathbf{r}_{0}	1120 isonontono	02			-18.0	430	<i>wz</i>
100			6		1 L		007	
200 200		DhMa	02	2.4 9.6	о и	+10.0	440	
393 393	2 O A A O NPh2 dimer	CHCl ₃	20	2.4 2.4	. 9	+17.2	440 440	
	0							
394		PhMe	20	2.9	7	+5.1	440	$\Delta V^* = -8.1$ for the
395	2 O - O - O - O - O - O - O - O - O - O	CHCI	20	ę	7	0	440	reverse reaction, x2 $\Delta V^* = -8.0$ for the
	0	>						reverse reaction, $x2$
396	0	PhMe	23	2.5	6	+9.0	441	
397 398	2 O O O O O O O O O O O O O O O O O O O	CHCI ₃ n-PrOH	53 53	2.5 2.5	. 9	+7.0 +14.5	441 441	
	>							
399	4	PhCI	20	2.6	5	+15.0	440	$\Delta V = +15.0 \text{ for the}$
	2Me0-(dimer							reverse reaction
	ťa							
400 401	$2 \sim CH_2CH_2^* \rightarrow \text{termination}$ $2 \sim CH_2CHPh^* \rightarrow \text{termination}$	neat neat	132-189 22	1.8 2.1	64	+7 +5.8	434, 435 436	
607		isonantana	-190 40 -63	0.3	c	с 3 т	130	
402		Isobellivatic	co- m cz1-	0.0	N		403	
403	cb_3 cb_3 cb_3 cb_3 b cb_3 cb_3 b cb_3	<i>t</i> -BuPh	-22 to +16	0.3	2	-1.2	439	
	c_{0_3} c_{0_3} c_{0_3} c_{0_3} c_{0_3}							
404	$(t-Bu)_2C=N^* \rightarrow t-Bu^* + t-BuC\equiv N$	isopentane	-22 to +10	0.3	2	+3	439	
405	t -BuOP(OEt) ₃ \rightarrow t -Bu ⁺ + OP(OEt) ₃	isopentane	-92 to -68	0.3	67 •	+0.2	439	
406		PhOMe	96	9.8	4	× I	442	
407 408	мЧ	PhOMe PhOMe	135 80	9.8 5.9	44	$^{-10}$	442 443	

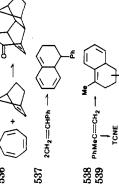
TABLE VII (Continued)

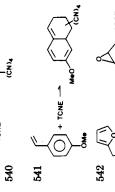
409 Meo-O-Silmezoosilmez-O-OMe	PhOMe	80	5.9	4	-9.6	443	
2)− OS:(Me) ₂ − OS((Me) ₂ − O)−C	PhOMe	80	5.9	4	-7.4	443	
$411 c_1 - O_2(1Me)_2 O_2(1Me)_2 - O_2(1M$	PhOMe	80	5.9	4	-8.0	443	
i-PrPh + CH2=C(MalPh	cyclohexane	20	1.5	5	9+	419	
$413 \bigcirc 10^{-1} 0000000 $	diglyme	100	4.2	ъ	-30	444	
	diglyme	100	4.2	ល	+10	444	
$415 \left(\bigcirc \sum_{s,san} \cdots \bigotimes_{s,san_3} \cdots \bigotimes_{s,sa$	CDCI ₃	30	1.5	9	-26	445	$\Delta V^* = -26$ for the reverse reaction
416 degenerate isomerization of	neat	68	2.5	12	-12.5	445	
SiMe3 417 degenerate isomerization of AAMes	neat?	4			Ť -	445	
	$\mathrm{Bu}_2\mathrm{O}$	130	1.6	5	-2.2	446	ΔV = +3.0 (60 °C)
$\begin{array}{c} 419 \\ 420 \\ \end{array} \\ 0 \\ \end{array} \\ 0 \\ - 0 \\ - 1 \\ - 0 \\ - 1 \\ - 0 \\ - 0 \\ - 1 \\ - 0 \\ - 0 \\ - 1 \\ - 0 \\ - 0 \\ - 1 \\ - 0 \\ -$	į-PrPh 1-C ₆ H ₁₃ OH	130 130	1.6 1.6	5	-11.1 -10.1	447 447	
421 ^{B°.}	N-methylpyrrolidone	180	10	æ		448	
422 Ac degenerate isomerization of Ac	CS_2	20	5.0	7	-0.5	445	
$\underbrace{423}_{424} \left(\underbrace{\text{Mo}_{2}\text{N}}_{2} - \underbrace{\bigcirc}_{2} \right)_{2} \operatorname{CPhONO} \longrightarrow \underbrace{\text{Mo}_{2}\text{N}}_{2} - \underbrace{\bigcirc}_{2} \right)_{2} \operatorname{CPhNO2}$	AcOEt acetone	25 25			$^{-15}_{-6}$	449 449	$\Delta V = +37$ $\Delta V = +9$

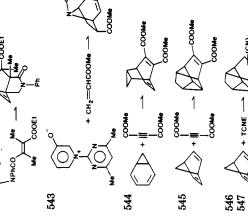
	1)					AV*/		
	reaction	solvent	$T/^{\circ}C$	P/ kbar	no. of <i>k</i>	(cm ³ mol ⁻¹)	ref	remarks
Ph H Me Coome	le L Ph COOMe COOMe	y2	70	9.2	6	-12.72	450	ΔV = +25 (70 °C)
Ph Ma Ma Ph COOMa -	Provide coordine coor	y2	70	9.4	10	-6.92	450	
ew ew ew ew	≥ → Mag	PhBr	140	1.4	က	-12	451	ΔV = -22 (20 °C)
() 1 2		pyridine	42	2.2	4	+2	451	
429 MeO 430 MeO MeO MeO A	Mao Ma neu Ma neu	DMS0 EtOH	56 60	0.9	4	-28.5 -30	452 452	ΔV = +52
CH2—CHOEt ^{#3} TONE	OEI (CM),	CHCI ₃	25	1.5	ũ	-28.0	453	b3, ΔV = −10.3 for EDAC formation
CH ₂ === CHO - <i>n</i> − Bu ↓ TCNE	o - bu	CHCI ₃	25	1.5	ũ	-30.8	454	b3, $\Delta V = -11.0$ for EDAC formation
Me ₂ C == CHOEt T TCNE	Me det CCNJ4	CHCl ₃	25	1.5	ũ	-41.8	454	b3, $\Delta V = -5.8$ for EDAC formation
- (MeOCO)2CO -	co - A-o coome	CH2CI2	62	2.4	7	-29	455	∆V = -31.8 (25 °C) ⁶³
+ +	en,	CHCI3-CCI4	25	1	2ı	-49	456	d3, CHCl ₃ 50 vol %
CH2-CHOEt + TCNE	ELO .NE	CH2Cl2	25	0.9	œ	-55	457	$\Delta V = -31.9^{c3}$
Me + TCNE -	E EIO Mo	CH2Cl2	25	1	6	-50	457	$\Delta V = -30.3^{c3}$

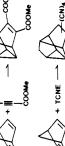
$\Delta V = -29.5^{c3}$	$\Delta V = -36.1^{c3}$	$\Delta V = -26.7^{c3}$		$\Delta V = -29.5^{c3}$ $\Delta V = -30.9^{c3}$	$\Delta V = -28.1^{c3}$ $\Delta V = -33.6^{c3}$		$\Delta V = +19$ $\Delta V = +22$ $\Delta V = +23$		11 11	11 H	11	H		$\Delta V = -30.0 \ (25 \ ^{\circ}\mathrm{C})^{\circ 3}$	$\Delta V = -31.0 \ (25 \ ^{\circ}\text{C})^{\circ 3}$	∆V = -33.2 (25 °C, heptane) ^{c3}
457	457	457		458 458	459 459	460	461 461 461	462 462	462 462	462 462	462 462	462 462	462 462	463	463	464
-55	-36	-44		-20.9 24.5	-33.7 -29.2	-28.8	-11 7 -9	-28 -26	-52 -44	-730 -30 -30	$^{-32}_{-22}$	-50 -32	-43 -31	-38.5	-40	-45
6	8	9		5	e 9		5 5 7	5 6	œœ	8	9	~ ~	~ ~	7	æ	9
1	1	0.3		5 5	0.8 2	1.2	0.8 1.5 0.8	$1 \\ 0.5$	1.3	1.3		$1,3 \\ 1.3$		0.9	2.3	1.4
25	25	25		34 34	60 60	26	22 52 52 53 53 53	25 25	25 25	25 25	25 25	25 25	25 25	80	100	16
CH2Cl2	CH_2Cl_2	CH2Cl2		CH ₂ Cl ₂ MeCN	1,4-dioxane MeCN	РһМе	CCI4 CHCI3 CH2CICH2CI MeCN	hexane $cy-C_6H_{12}$	PhMe PhH	CH ₂ Cl ₃ PhCl	CCI4 PhCN	PhMe CH ₂ Cl ₂	PhMe CH2Cl2	decane-heptane	decane-heptane	decane ^{e3}
	25 1 9 -55 457 ΔV	25 1 9 -55 457 ΔV 25 1 8 -36 457 ΔV	25 1 9 -55 457 ΔV 25 1 8 -36 457 ΔV 25 0.3 6 -44 457 ΔV	25 1 9 -55 457 ΔV 25 1 8 -36 457 ΔV 25 0.3 6 -44 457 ΔV	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25 1 9 -55 457 $\Delta V =$ 25 1 8 -36 457 $\Delta V =$ 25 0.3 6 -44 457 $\Delta V =$ 25 0.3 6 -44 457 $\Delta V =$ 34 2 5 -20.9 458 $\Delta V =$ 34 2 5 -20.9 458 $\Delta V =$ 60 0.8 3 -33.7 459 $\Delta V =$ 97 1.2 -28.8 460 $\Delta V =$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25 1 9 -55 457 25 1 8 -36 457 25 1 8 -36 457 25 1 8 -36 457 25 1 8 -36 457 26 1 8 -36 457 26 1 8 -36 457 26 2 2 5 -20.9 457 31 2 4 451 457 457 27 12 2 5 -20.9 456 457 27 12 2 5 -11 461 451 28 1 13 8 -11 461 28 1 13 8 -11 461 28 1 1 7 -29 453 28 1 1 7 -11 461 28 1 1 1 463 463 28 1 1 1 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						

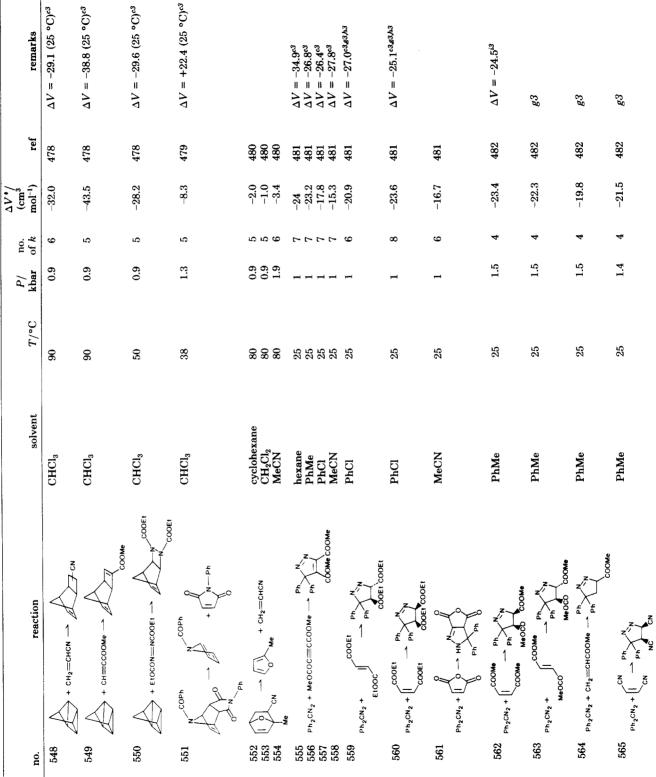



			/d	no.	$\Delta V^*/$		
no. reaction	solvent	$T/^{\circ}C$	kbar	of k	mol ⁻¹)	ref	remarks
$466 c_{16} = 0 + 0 - c_{16} + 0$	decane ^{e3}	16	1.4	9	-43	464	$\Delta V = -34.3 (25 ^{\circ}\text{C}, \text{heptane})^{c3}$
$467 c_{1_0} + () \rightarrow c_{1_0} + ()$	decane ^{e3}	100	1	9	-38	464	$\Delta V = -33.3 (25 °C, heptane)^{c3}$
$468 c_6 \in \bigcirc + \bigcirc \cdots + c_6 \in \bigcirc \bigcirc$	decane ^{e3}	91	1.4	9	-35	464	$\Delta V = -35.6 (25 °C, heptane)^{c3}$
$469 \qquad c_{16} + \bigcirc \rightarrow c_{16} + \bigcirc \rightarrow c_{16} + \bigcirc \bigcirc + \bigcirc + \bigcirc \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc + \bigcirc + $	decane ^{e3}	80	1	9	-32	464	$\Delta V = -34.5 \ (25 \ ^{\circ}\text{C}, \text{heptane})^{\circ 3}$
$470 c_{16} + c_{1$	decane ^{e3}	100	1.4	ŋ	-30	464	
$471 c_{10} \in \left(\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \to c_{10} + \left(\uparrow $	heptane ^{e3}	100	1.2	5	-37	465	$\Delta V = -33.0 \ (25 \ ^{\circ}C)^{c3}$
$472 c_{i_0} + c_{i_1} + c_{i_1} + c_{i_1} + c_{i_2} + c_{i_1} + c_{i_1} + c_{i_1} + c_{i_2} + c_{i_1} + c_{i_1} + c_{i_1} + c_{i_2} + c_{i_1} + c_{i_1} + c_{i_2} + c_{i_1} + c_{i_1} + c_{i_1} + c_{i_2} + c_{i_1} $	heptane ^{e3}	100	1.4	9	39	465	$\Delta V = -33.2 \ (25 \ ^{\circ 0})^{\circ 3}$
$473 c_{16} + c_{1$	heptane ^{e3}	100	1	7	-39	465	$\Delta V = -33.5 \ (25 \ ^{\circ}C)^{\circ 3}$
$\frac{474}{10} \operatorname{ch}\left(-\frac{1}{10} + \left \int \right - \operatorname{ch}\left(+ \int \right) \right \right)$	heptane ^{e3}	100	1	9	38	465	$\Delta V = -33.1 \ (25 \ ^{\circ}\text{C})^{c3}$
$475 \qquad \qquad$	heptane ^{e3}	100	0.9	9	-41	465	ΔV = -33.5 (25 °C) ^{c3}
$476 c_{16} + c_{1$	heptane ^{e3}	100	1.4	5	-37	465	$\Delta V = -33.0 \ (25 \ ^{\circ}\text{C})^{c3}$
$477 \qquad c_{10} + c_{1$	heptane ^{e3}	110	1.9	5	-36	465	ΔV = -32.5 (25 °C) ^{c3}
$478 \qquad c_{le} + 1 \qquad \rightarrow c_{le} + 1 \qquad c_{le} +$	heptane ^{e3}	100	0.9	7	-31.5	465	
$479 c_{10} + 1 - c_{10} + 1 - $	heptane ^{e3}	49	0.9	5	-27.5	465	
$430 c_{10} + + + + + + + + + + + + + + + + + + +$	heptane ^{e3}	70	0.9	5	-30	465	$\Delta V = -30.6 \ (25 \ ^{\circ}\text{C})^{\circ 3}$
$481 c_{i_0} \in \bigcirc + 0 \longrightarrow c_{i_0} = 0 \longrightarrow c_{i_0} \oplus \bigcirc c_{i_0} \oplus \bigcirc c_{i_0} \oplus \bigcirc c_{i_0} \oplus \bigcirc c_{i_0} \oplus (c_{i_0} \oplus c_{i_0}) \oplus (c_{i_0} \oplus c$	heptane ^{e3}	100	0.9	ភ	-36	465	$\Delta V = -28.0 \ (25 \ ^{\circ}\mathrm{C})^{c3}$
$482 c_{\bullet} \notin f + \int^{coci} - c_{\bullet} \# f + f = c_{\bullet} + f = c_{\bullet} + f + f = c_{\bullet} + c_{$	heptane ^{e3}	50	0.9	9	-27	465	$\Delta V = -28.5 \ (25 \ ^{o3})^{c3}$
$483 c_{4} \bigoplus + \int - c_{14} \bigoplus - c_{14} \bigoplus - c_{14} \bigoplus - c_{16} \bigoplus - $	heptane ^{e3}	100	1	9	-45	465	$\Delta V = -34.6 \ (25 \ ^{\circ}\text{C})^{c3}$


484	c_{left} + c_{left} + c_{left}	heptane ^{e3}	100	1.9	5	-42	465	ΔV =32.9 (25 °C) ⁶³
485	$c_{i} \neq (j) + (j) \rightarrow c_{i} + $	heptane ^{e3}	100	1.3	5	-47	465	$\Delta V = -33.5 \ (25 \ ^{\circ}\mathrm{C})^{\circ3}$
485b	c ¹ ℓ ↓ ↓ ↓ − c ¹ ℓ ↓	heptane ^{e3}	72		5	-43	465	
486	5° + () + () + () + () + () + () + () + (heptane ^{e3}	72		2	-38	465	$\Delta V = -33.3 \ (25 \ ^{\circ}C)^{c3}$
487	$\sum_{i=1}^{n} + \sum_{i=1}^{n} - \frac{1}{2} + \sum_{i=1}^{n} - $	heptane ^{e3}	72		2	-35	465	
488		heptane ⁶³	72		2	-28	465	
489		CH ₂ Cl ₂	37	7.5	5	-30.3	466	
490	$M_{0} = M_{0} + \int_{0}^{0} - \int_{0}^{0} - \cos M_{0}$	CH2Cl2	37	10	9	-32.2	466	
491 492 493	$M_{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + Me_{2}G = CHAc - Me \end{pmatrix} Me $	heptane Et ₂ O CH ₂ Cl ₂ MeCN	117 117 117		ოოაი	46 - 50 - 50	467 467 467	
495	M A CH2=CHAC - M A A	CH2Cl2	106	1.5	4	-46	467	
496	12 <u></u> C(Me)C(Me)CH2	n-BuBr	70	5	6	-34.5	468	$\Delta V = -44.9^{c3}$
497 498	> > ₽ ₽ ₽	PhMe EtOH	25 25		2	-39.7	469 469	11 11
499 500		CH2Cl2 PhCl	25 25			-28.8 -26.8	469 469	$\Delta V = -30.9^{co}$ $\Delta V = -30.6^{c3}$ $\Delta V = -30.6^{c3}$
503 503 503	OEI	PhNO ₂ CH ₂ CICH ₂ CI CCI 4	25 25			-22.0 -30.0 -29.3	469 469	
504 505	No - Co	PhMe CCI4	25 25	H H ,	~ ~ ~ ~	-39.2 -32.0	469 469	$\Delta V = -38.2^{c3}$ $\Delta V = -40.5^{c3}$ $\Delta V = -25.3^{c3}$
208 208 208		PhCI CH2CI2 CH2CICH2CI	25 25			-20.1 -27.8 -27.5	469 469	$\Delta V = -36.6^{\circ3}$ $\Delta V = -38.4^{\circ3}$
509 510	2	EtOH PhNO2	25 25		7	-29.1 -26.6	469 469	0 0
$511 \\ 512$	2(PhMe PhCl	25 25		7	-33.9 -37.1	469 469	11 11
513 514		CH2Cl2 EtOH	25 25		~ ~	-25.7 -39.5	469 469	ΔV = -36 ΔV = -40
515	2CH2=CHCH0 - (1 - CHO	heptane	70	11.3	9	-37.0	470	$\Delta V = -28.6^{c3}$


remarks	$\Delta V = -29.7^{c3}$	$\Delta V = -29.7^{c3}$	$\Delta V = -32.3^{c3}$												
ref	470	470	470	471	471	471	471	471	471	471	471	471	471	472	472
$\begin{array}{c} \Delta V^* \\ (cm^3 \\ mol^{-1}) \end{array}$	-36.5	-35.0	-37.0	-42	-45	-47	-50	-42	-45	-44	-39	-43	-43	-33	-39
no. of <i>k</i>	9	9	9	4	က	4	4	4	4	4	4	4	4		
P/ kbar	11.3	11.3	11.3	5	7	1	5	62	5	8	3	7	73	ç	m
T/°C	70	70	02	120	120	120	120	120	120	120	120	120	120	120	120
solvent	heptane	heptane	heptane	heptane	heptane	heptane	heptane	heptane	heptane	heptane	heptane	heptane	heptane	neat	neat
reaction	CH ₂ =CHCH0 + CH ₂ =CHAc → 10 Ac	сн ₂ =снсно + сн ₂ =снас -> Ме осно	2CH ₂ =CHAc → Me O Ac	CH2=CHCH0 + CH2=CHOEt →	сн ₂ =снсно + сн ₂ ==сно/-ви - 100000000000000000000000000000000000	CH₂=CHCHO + CH₂=CMeOMe → (OMe	CH ₂ =CHAC + CH ₂ =CMeOMe - Me OMe	523 Me c_{HO} + c_{H_2} = c_{HOEt} - c_{OEt}	\ <u> </u>	Me (H0 + CH2=CH0-/-Bu (0/-Bu (CH0	сно + сн ₂ =сно-, -ви - 1	We CHO + CH ₂ =CMeOMe - 1 OMe	Ve CHO + CH ₂ =CMeOMe - OMe		
no.	516	517 c	518 2	519 0	520 °	521 c	522 c	523	524 ^N	525 ^w	526 Me.	527 Me.	528	529 2	530

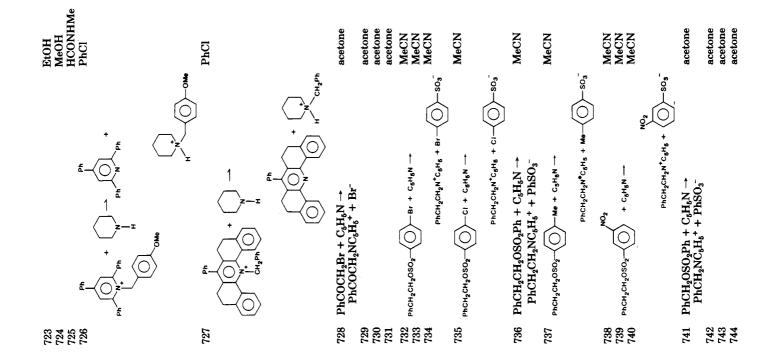

		ΔV = -25.5 (60 °C) ^{e3}	$\Delta V = -33.5 \ (60 \ \circ C)^{a3}$ $\Delta V = -32.1 \ (60 \ \circ C)^{a3}$	£	b3 b3, $\Delta V = -4.0$ for	b.D.A.C formation b3, $\Delta V = -6.9$ for FDAC formation	d3, CHCl ₃ 50 vol %	$\Delta V = -23$	$\Delta V = -37.0^{c3}$		ΔV = -35.5 (25 °C) ^{α3}	$\Delta V = -32.9 (25 \circ C)^{c3}$ $\Delta V = -36.2 (25 \circ C)^{c3}$
472	472	473	473 473	474	461 461	461	456	475	476	460	477	477 477
-39	-36	-21.4 -16.8	-30.0 -27.8	-36.7	-30 -29	-30	-38	-25	-36.0	-33.8	-40.5	-30.0 -32.8
		ດວ	Ω Ω	9	5	5	5	7	œ		2	9 9
e	ŝ	0 0	12 12	2.0	0.8 1.5	1	1	П	-	1.2	1.9	1.1 0.8
120	120	105 105	135 135	8	25 25	25	25		55	61	66	40 40
heat	neat	i-PrPh DMF	<i>i</i> -PrPh DMF	neat	cci , cHci,	CH2CICH2CI	CHCI3-CCI4	BtOH	EtOH	РһМе	НЧ	PhMe MeCN
									₹			



g3	g3		$\Delta V = -22.7^{13}$				MeCN 89 mol %,	$P \ge 3.9 \text{ kbar}$ MeCN 89 mol %, D > 3.0 tbos	$F \ge 3.5 \text{ kuar}$ MeCN 89 mol %,	$P \ge 3.9$ kbar MeCN 89 mol %, $P \ge 3.9$ kbar	$\Delta V = -36.1 (60 °C)^{c3}$ $\Delta V = -31.8 (60 °C)^{c3}$ $\Delta V = -34.2 (60 °C)^{c3}$	$\Delta V = -34.9 \ (60 \ \circ C)^{c3}$ $\Delta V = -35.0 \ (60 \ \circ C)^{c3}$ $\Delta V = -34.0 \ (60 \ \circ C)^{c3}$	$\Delta V = -27.0 \ (25 \ ^{\circ}\mathrm{C})^{\circ3}$	$\Delta V = -26.5 \ (25 \ ^{\circ}\mathrm{C})^{c3}$	ΔV = -30.9 (25 °C) ^{e3}
482	482	483	484 484 484	484	484	484	485	485	485	485	486 486 486	487 487 487	488	488	488
-21.0	-23.9	-21	-21.7 -24.3 -18	-19.9	-22.9	-19.5	-18.3	-20.5	-21.3	-24.4	-37.6 -28.2 -32.6	-33.1 -30.5 -30.1	-39	-36	-44
4	4	9					4	4	4	4	សស	ຄຄ	7	6	7
1.5	1.5	9					9.7	9.7	9.7	9.7	~ ~ ~	000	1.3	1.3	1
PhMe 25	PhMe 25	MeCN 80	PhMe 25 CHCl ₃ 25 MeCN 25	PhMe 25	PhMe 25	PhMe 25	none 130	none 139	none 149	none 158	i-PrPh 80 1,4-dioxane 80 DMF 80	<i>i</i> -PrPh 80 1,4-dioxane 80 DMF 80	CCI4 110	CCl4 110	CCI4 110
$566 Ph_2 Ch_2 + \int_{NC}^{CN} Ph_{NC}^{h} $	$567 Ph_2 ch_2 + cH_2 = cHch + Ph_2 ch_2$	$568 \qquad \qquad$	570 Photo Ph	Me Phico Coome		574 $p_{p} = p_{p} = $	575 Me CH2Ph	$576 \text{ Mecn} + \text{PhcH}_2\text{N}_3 \rightarrow N_n$	577	578			$\begin{cases} 85 (MeOCO)_2CO + n-BuCH = CH_2 \rightarrow CH_2 $	$\begin{array}{c} n-PrCH=CHCH_2C(OH)(COOMe)_2\\ 586 (MeOCO)_2CO + s-BuCH=CH_2 \rightarrow \\ model = 0 \\ model $	$Et(Me)CO_{CO} + t-BuCH_2(COH)(COOMe)_2$ $CH_2 = C(CH_2 t-Bu)CH_2(OH)(COOMe)_2$

(Continued)	
IIV 3	
TABLI	

$b_{\rm h}$	cy-C ₆ H ₁₁ Me		5		-13	493
	cy-C ₆ H ₁₁ Me		5		-18	493
$\begin{array}{c} \mathbf{h}_{\mathbf{a}} \\ \mathbf{h}_{\mathbf{h}} \\ \mathbf{h}_{h$	<i>су</i> -С ₆ Н ₁₁ Ме		7		-15	493
$h_{\rm H}^{\rm h} \rightarrow h_{\rm H}^{\rm h} \rightarrow h_{\rm H}^{\rm h} \rightarrow h_{\rm H}^{\rm h}$	cy-C ₆ H ₁₁ Me		73		-12	493
610 coal + () - ()	neat	400	0.6	e	-10	494
	neat	400	0.6	က	-55	494
612 2 0 0 0 0 0 0 0 0	neat	260	1.1	4	-25	495
	neat	220	1	en	29	495
	neat neat	220 200		იი	-23 -31	495 495
	neat	75	0.7	en	-33	495
	neat	175	0.7	co	-28	496
$618 \cos 1 + (0) \rightarrow 0$	neat	344	0.7	e	-27	496
621 Br \sim	AcOH	75	1	9	-24.5	497

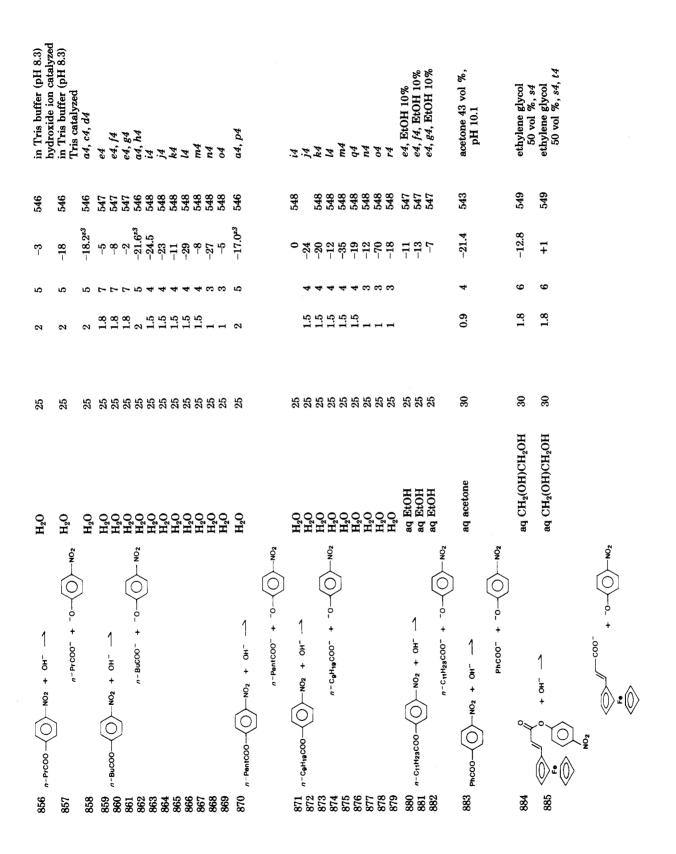

TABLE VII (Continued)								
		antwant	Jo/ L	P/	of b.	$\Delta V^{\bullet}/$ (cm ³	for	romarka
no. reaction				IDUA	-	1 1011		I CHIMI AS
622 Me () CH ₃ CI + H ₂ O - Me ()) — сн ₂ он + нсі	H_2O	8	1.6 1	50 0	-7.3	498	
		ad EtOH	30	0.1 1 9		-19.5	498	EtOH 20 mol %
625 625		ad EtOH	88	1.6	<u>ہ</u>	-23.4	498	
626		aq EtOH	30	1.6	9	-16.4	498	40 mol
627		H_2^{0}	40	1.6	9	-8.3	498	
628		aq EtOH	40	1.6	9	-13.8	498	
629		aq EtOH	40	1.6	99	-20.3	498	EtOH 20 mol %
631 631		ad EtOH	40	1.6		-17.5	498 498	EtOH 40 mol %
		H _o O	30	1.6	9	-11.6	499	
$633 ci - (\bigcirc) - ch_2 ci + h_2 0 - ci - (\bigcirc)$) — сн ₂ он + нсі	aq EtOH	30	1.6	9	-17.6	499	EtOH 10 mol %
634	1	aq EtOH	30	1.6	9	-21.2	499	EtOH 20 mol %
635		aq EtOH	30	1.6	9,0	-15.0	499	EtOH 30 mol %
636 637		aq EtUH	30 40	0.1 9	9	-13.3	499 499	EtOH 40 mol %
638		aq EtOH	40	1.6	9	-17.4	499	
639		aq EtOH	40	1.6	9	-21.4	499	20 mol
640 641		aq EtOH	40 10	1.6 1 6	ю ч	-15.7	499 100	EtOH 30 mol % EtOH 40 mol %
() (140		H O	₽ c	1.6	. .	0.01	200	
042 MeO $\left(\bigcirc\right)$ $-CH_2CI + H_2O \rightarrow CA_3$		an RtOH	10	1.6	ۍ د	-10.8	200	EtOH 10 mol %
		aq EtOH	1 61	1.6	9	-19.0	200	EtOH 20 mol %
645 Me0-	C CH20H + HCI	aq EtOH	2	1.6	9	-20.5	500	EtOH 30 mol %
646		aq EtOH	5	1.6	9	-15.4	500 200	EtOH 40 mol %
647 248		H ₂ U ac R+OH	10	1.6 1 f	ي م	6.11- 9.11-	000	E+OH 10 mol %
040 649		ad EtOH	10	1.6	9	-20.0	200	
650		aq EtOH	10	1.6	9	-21.6	500	EtOH 30 mol %
651		aq EtOH	10	1.6	9	-16.2	500	EtOH 40 mol %
652 Me		H_2O	30	1.6	9	-7.9	501	
	сн,он + нсі	aq EtOH	06	1.6 1 £	99	-14.4 -19.7	501	EtOH 10 mol %
		ad EtOH	8 8 8	9.1	e G	-21.7	201	
656		aq EtOH	30	1.6	9	-16.1	501	EtOH 40 mol %
657		H ₂ 0	40	1.6	9	-8.4	501	•
658 250		aq EtOH	40	1.6 1 £	ي ب	-14.8	501 501	EtOH 10 mol %
600 660		ad EtOH	40	1.6	ۍ د	-22.8	201	
661		aq EtOH	40	1.6	9	-16.7	501	
662 " ^{Me}	₩,	aq EtOH	25	1.5	7	-17.3	502	EtOH 80 vol %
Me - () - CH ₃ CI + H ₂ O - Me - ()	О + нсі							
	MB MB							
663 / ^{-Pr}	/-Pr	aq EtOH	25	1.5	7	-18.4	502	EtOH 80 vol %
<i>i</i> - Pr − () → CH ₂ Cl + H ₂ O → <i>i</i> - Pr −	<0 →−cH₂OH +	4						
,-Pr	-Pr							
	HCI							

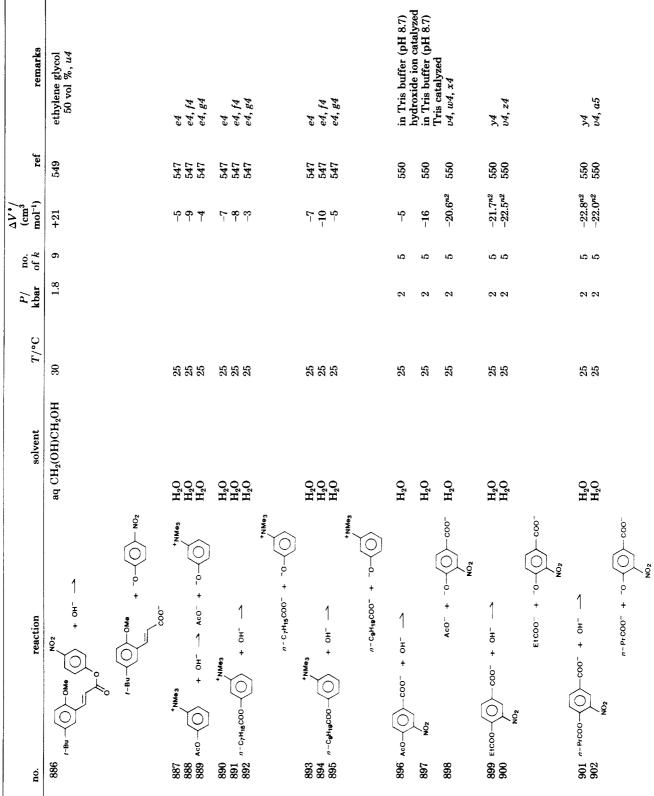
EtOH 80 vol %	EtOH 80 vol %	EtOH 80 vol % ΔV* = +0.9 at 70 kbar, F+014 80.vol 9.	Et0H 80 vol %	PhCl 30 vol %; for dissociation, $\Delta V^* = -32.3$	PhCl 40 vol %; for dissociation, $\Delta V^* = -30.8$ PhCl 50 vol %; for dissociation, $\Delta V^* = -30.6$	in Dabco buffer (pH 8.0); in Tris buffer (pH 8.0); uncorrected for ionization of water in Tris buffer	(pH 8.0), <i>j3, k3</i> in Tris buffer (pH 8.0), <i>k3, l3</i>	in Tris buffer (pH 8.0); uncorrected for ionization of water in Tris buffer (pH 8.0), <i>i3. m3</i>	in Tris buffer (pH 8.0), <i>13, m3</i> in Tris buffer (pH 9.5);	interaction of water $[OH] = 0.0909 \text{ mol/L}$ in Tris buffer (pH 9.5), j3, k3
502	503 504	504 505 505 505 505	507 507 507 497	508	508 508	509 510 510	510	510 510	510 510	511 510
-15.7	-8.3 -19	-40 -5 -23 -30	-36.8 -31.5 -21.4 -26.9 -39.3	+19.7	+18.0 +20.5	+ + + 4	+10	-1 +1	8 + 0	-0.9 -6
7	20 6	စက္စစ္လစ္		0 9	999	4 4	5.	4	4	9
1.5	6.9 1	1.1 0.5 0.9 81		0.7	0.7 0.7	2.1	1.5	1	1	62
25	30 30	8 8 2 2 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	55	25 25	25 25 25	25	25 25	25 25	25 25
aq EtOH	H ₂ O aq EtOH	aq EtOH t-BuOH t-BuOH t-BuOH t-BuOH MeOH-EtOH	AcOH AcOH AcOH AcOH	PhCI-PhH	Рьсі-Рьн Рьсі-Рьн	H ₂ 0 H ₂ 0 H ₂ 0	H_2O	H20 H20	H ₂ O H ₂ O	H_2O H_2O
$I - Bu - O - CH_2CI + H_2O \rightarrow I - Bu - O - CH_2OH + I -$	$PhCH_2Cl + H_2O \rightarrow PhCH_2OH + HCl$	t-BuCl + H ₂ O → solvolysis products t-BuCl + t -BuOH → solvolysis products t-BuBr + t -BuOH → solvolysis products i-PrBr + ROH → solvolysis products	PhC(Me) ₂ CH ₂ OTs + AcOH → solvolysis products me→O→-cme ₂ CH ₂ OTs + AcOH → solvolysis products	n-Bu₄N ⁺ + Pic ⁻ → n-Bu₄N ⁺ Pic ⁻	Pic - o2N - O2 NO2	$\left(Me_{2}N - O_{2}\right)_{2} C^{+}Ph + OH^{-} - \left(Me_{2}N - O_{2}\right)_{2} CPhOH$		$\left(E_{1_2}N - \bigcirc \right)_2 C^* P_n + OH^- \longrightarrow \left(E_{1_2}N - \bigcirc \right)_2 CPhOH$		
664	665 666	666b 667 668 669 669 670	671 672 673 674 675 675	677	679 679	680 681 682	683	684 685	686 687	688 689

TABLE VII (Continued)

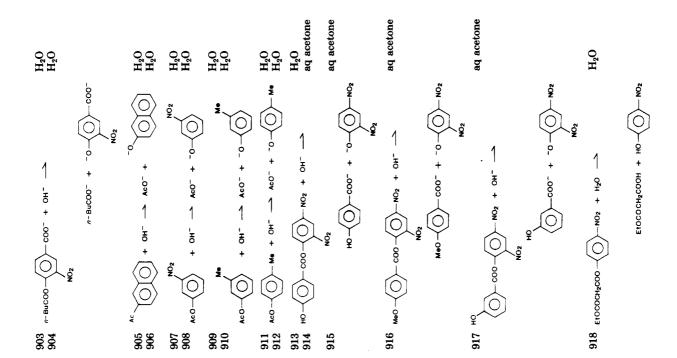
remarks	in Tris buffer (nH 9.5), 13, n3	03 03	in Tris buffer (nH 9.5), i3, n3	in Tris buffer (pH 9.5), <i>l3, m3</i>			ΔV = +13 ΔV = +10 (40 °C)	$\Delta V = +28 (24 \circ C)$	MeOH 95% ΔV = +28 (26 °C)	MeOH 90%, $\Delta V = +18$;	MEUN 80%, $\Delta V = \pm 20$ $\Delta V = \pm 18$			$\Delta V = +20 \ (20 \ ^{\circ}\text{C})$		$\Delta V = +15 (21 \ ^{\circ}C)$	$\Delta V = +12$							Ш	$\Delta V = +3.3, c3, q3$ $\Delta V = +2.1, c3, q3$	$\Delta V = -3.7, c.3, q.3$	$\Delta V = -4.0, c3, q3$
ref	510	511 511	510	510	449	449	449 440	449	449	449	445	449 449		449	449	449	443 449		449	449	512	512 519	512	512	513	513 513	513	513
$\Delta V^{\bullet}/$ (cm ³ mol ⁻¹)	+4	+2.9 +1.3	0	+3	-13.7	$^{-12}$	ې د م	-16	-8.4	-8.3	II -	-16 -20		9	4	-4 	0.0	L-	-18	-8.5	+2.2	-9.1 -8 0	-0.9	-15.0	+14	9.9 9.9 9.9	-11.6	-10.4
no. of <i>k</i>	4		5	5	°,	ന	იი თ	50	အ	ကြင	n i	5 C		2	ო	c1 c	o				5	юu	ວເດ	4	8	00 er	ŝ	×
P/ kbar	1		1.5	1.5	1	0.6 2.0	0.9 0 8 0	0.0	0.9	0.9	0.9	0.6 0.6		0.8	0.6	0.8	6.0				1			6.0	1.7	2.8 1	0.6	1.7
T/°C	25	25 25	25	25	51	30	30 50	26 26	31	35	07	26 25	ì	43	22	23	22 22	26 	43	24	25	25 95	25 25	30	25	25 25	40	25
solvent	H ₂ O	H ₂ 0 H ₂ 0	, H2O	H ₂ 0	MeCN	MeNO ₂	DMSO	MeUCH2UH2UH MeOH	aq MeOH	aq MeOH	aq MeUH	aq MeUH MeOH		DMSO	MeOH	DMSO DMSO	MeUUn ₂ Un ₂ Un MeOH	MeOH	MeOCH ₂ CH ₂ OH	H_2O	H_2O	H ₂ 0 H_0	H_2^{00}	DMSO	MeCOCH2-i-Pr	acetone MeCN	sulfolane	propylene carbonate
reaction						$\left(Me_{2}N - \left(O\right) + c^{+p_{1}} + NO_{2}^{-} \rightarrow \left(Me_{2}N - \left(O\right) + c^{-p_{1}}NO_{2}^{-}\right)\right)$				-			$\left(\operatorname{Me_2N}-\left(\bigcirc\right)_2 + \operatorname{N_3}^{-} \rightarrow \left(\operatorname{Me_2N}-\left(\bigcirc\right)_2 + \operatorname{CPh_2N_3}^{-}\right)_2$	Ma N - Contraction - Contracti	(Me2N-O) CPhOSOPh		(M82N () + AC0 ⁻ → (M82N ()) CPhOAc		$\left(\operatorname{we_{2}W}(O)\right)_{2}^{c^{+}Ph} + Phs^{-} \rightarrow \left(\operatorname{we_{2}W}(O)\right)_{2}^{c^{+}PhsPh}$	$\left(Me_2N-O\right)_2$ c ⁺ Ph + OH $\rightarrow \left(Me_2N-O\right)_2$ CPhOH	$PhN_3^+ + N_3^- \rightarrow PhN=NN_3$	$PhN_2^+ + HSO_3^- \rightarrow PhN=NSO_3H$	P_{0} P_{0	P-0 ₅ NC ₆ H ₄ N=NS0 ₅ Pn p-MeOCH4N=N+ + P-0 ₅ NC ₆ H ₄ COO ⁻ →	$neucent n=nucucent nu_2$ $n-PrBr + I^- \rightarrow n-PrI + Br^-$			
Do.	069	691 692	693	694	695	969	697	869 669	700	101	20/	703	5	705 /	706	L01	802	710) 111	712 (713	714		717	718	719	721	722

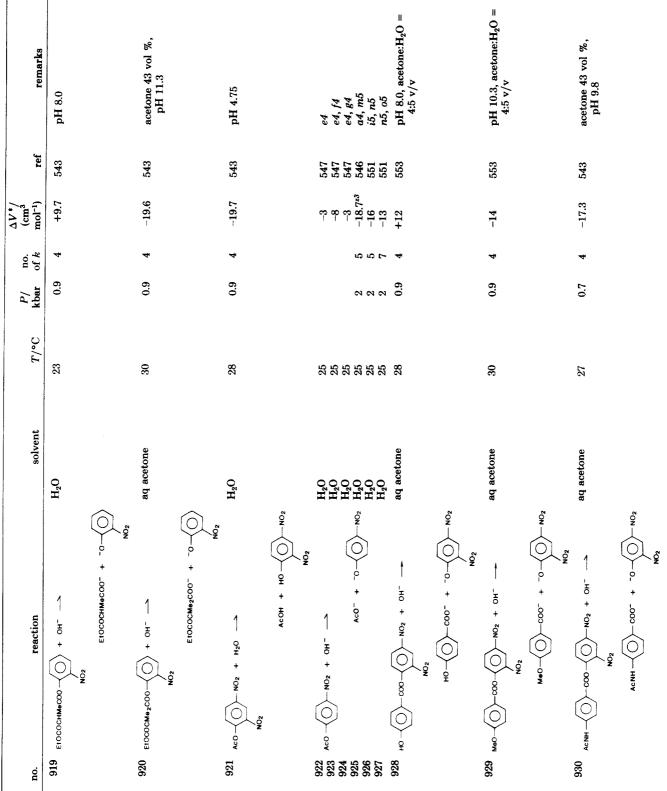
$\Delta V = -3.5$ (25 °C), c3, $\Delta V = -1.7$ (25 °C), c3, $\Delta V = -3.5$ (25 °C), c3,	$\Delta V^* = -20$ at 1 kbar				
513 513 514	514	515 515 515 515 516 516 516 516	517 517 517	518 518 518	519 519 519 519
	+22	-15.4 -15.4 -20.5 -21.9 -10.3 -9.6	-9.2n ² -11.4n ² -12.8n ²	-13.9 12.8 12.6	-20.9 -16.9 -14.4 -13.0
10 8 6	21	ပြ လ်လ်လ မနန	പ്പ വ	ດວນ	4 444
6.3 2.6 2.1	1.8	$\begin{array}{c} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array}$	10 10 IO	0 0 0	868
30 20 30 20 30	30	60 50 4 6 33 3 60 50 4 6 33 30 53	20 20 20 20	40 50 60	25 20 40 30 20

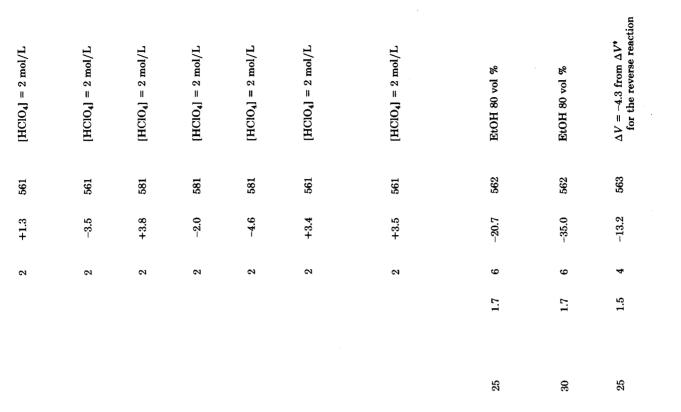

		an a				\•V		
no.	reaction	solvent	$T/^{\circ}C$	P/ kbar	no. of <i>k</i>	(cm ³ mol ⁻¹)	ref	remarks
745 746	Et ₃ N + MeI> Et ₃ NMe ⁺ I ⁻	MeCN propylene	30 30 30			-28.2 -25.8	520 520	$\Delta V = -63.1^{c3}$ $\Delta V = -36.2^{c3}$
747	Ph _s P + MeI → Ph _s PMe ⁺ Γ	carbonate MeCN	30			-28.0	520	$\Delta V = -49.8^{c3}$
748		propylene	30 80			-17.6	520	H
749		carbonate DMF	30			-21.7	520	$\Delta V = -39.3^{c3}$
750		DMA	30			-21.8	520	11
751	Me ₂ NCSNMe ₂ + MeI+ (Me ₂ N) ₂ CSMe ⁺ I ⁻	MeCN	30			-22.0	521	11
752		propylene carbonate	30			-17.4	521	11
753	Me	MeCN	30			-23.6	522	ll
754	N = 1 = N = SMeI	propylene carbonate	30			-16.9	522	$\Delta V = -22.3^{c3}$
	Me							
755	; ;	MeCN	30			-21.8	523 503	$\Delta V = -40.3^{c3}$
0.01	$\left - \right \rightarrow s + MeI \rightarrow \left[\odot \right] \rightarrow sMeI^{-1}$	propylene carbonate	00			-10.4	070	- AT - AD
757	يتر ر / 2	DMA	30			-16.7	523	$\Delta V = -30.7^{c3}$
758	₩ v v v v v v v v v v v v v v v v v v v	none	160	9.8	7	-30	524	P > 1 kbar
	n-Bu2BNH2 + 2MeCN → + + H → N = H → H n-Bu → B							
759 760	$PhN_2BF_4 \rightarrow PhOH + N_2$	H2O H,0	25 40	0 0	ດ	+10.6 +10.9	525 525	[HCl] = 0.001 mol/L [HCl] = 0.001 mol/L
761		- H.0	25	2	5	+10.8	525	
	$Me \longrightarrow Me \longrightarrow Me$							
762	$\underbrace{\left\langle \bigcirc \right\rangle}_{Me} N_2 B F_4 \rightarrow \underbrace{\left\langle \bigcirc \right\rangle}_{Me} O H + N_2$	H ₂ O	25	2	5	+10.9	525	[HCl] = 0.001 mol/L
763 764	Me () - N ₂ BF4 - Me () - OH	H_2O H_2O	40 55	0 0	ກ	+10.8 +11.0	525 525	[HCI] = 0.001 mol/L [HCI] = 0.001 mol/L
765		H_2O	25	2	5	+10.5	525	[HCl] = 0.001 mol/L
766	0 0	H ₂ O	25	2	5	+10.9	525	[HCl] = 0.001 mol/L
767		H ₂ O	35	2	5	+11.0	525	[HCl] = 0.001 mol/L
768 769		H_2O H_2O	45 55	8 8	ວວ	+10.7 +10.8	525 525	[HCl] = 0.001 mol/L [HCl] = 0.001 mol/L

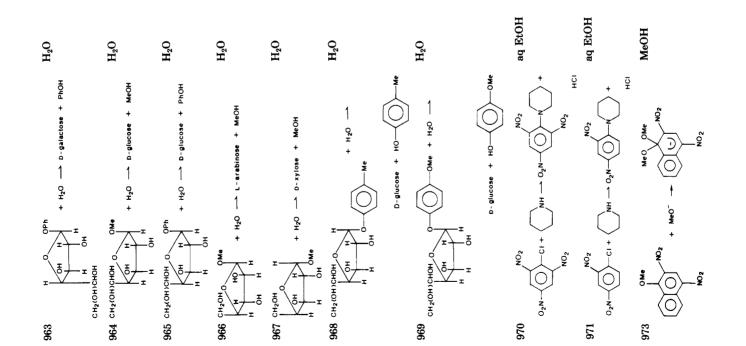

	H ₂ O	55	5	5	+10.8	525	[HCI] = 0.001 mol/L
771 PhN ₂ BF ₄ \rightarrow PhOMe + PhF + N ₂ 772 $M_{0} - \langle O \rangle - N_{2}BF_{4} \rightarrow M_{0} - \langle O \rangle - OM_{0} + F - \langle O \rangle - M_{0}$	MeOH MeOH	30 45	0 0	ດ	+12.9 +13.2	526 526	[H ₂ SO ₄] = 0.001 mol/L [H ₂ SO ₄] = 0.001 mol/L
−N2BF4 ↓	MeOH	50	73	5	+5.3	527	[H ₂ SO ₄] = 0.001 mol/L
	МеОН	45	3	5	+4.7	527	[H ₂ SO ₄] = 0.001 mol/L
$775 \text{NC} = 0 \text{N}_2 \text{BF}_4 \rightarrow \text{NC} = 0 \text{H}_1$	MeOH	20	2	5	+6.0	527	[H ₂ SO ₄] = 0.001 mol/L
$776 o_2 n - O - N_2 BE_4 - o_2 n - O - H$	МеОН	50	2	5	+5.4	527	[H ₂ SO ₄] = 0.001 mol/L
777 $PhN_2BF_4 \rightarrow PhOCH_2CF_3 + PhF + N_2$ 778 $mo - O - m_2BF_4 \rightarrow mo - O - F$	CF ₃ CH ₂ OH 1,4-dioxane	30 55	~ ~	5	+16.1 +9.2	526 526	
779 Mar O Mar - N2BF4 -	CF ₃ CH ₂ OH	45	5	5	+16.9	526	
Na-(O)-ocH2CF3 + Ma-(O)-F 780 Ma Na-(O)-N2BF4	CF ₃ CH ₂ OH	25	0.3	5	1.11+	528	
-ocH2CF3 + Me							
$781 \qquad \qquad$	CF ₃ CH ₂ OH	30	2	5	+16.8	526	
$782 \bigcirc \qquad Ac \qquad Ac \qquad Ac \qquad Ac \qquad Ac \qquad Table = - \left(\bigcirc -0.0H_2 CF_3 + \left(\bigcirc -F_1 \right) + \left(\bigcirc -F_2 \right) \right)$	CF ₃ CH ₂ OH	55	3	5	+16.3	526	
Àc	1,4-dioxane	60	5	5.	+8.5	526	
Pr Pr Pr Pr Pr Pr Pr Pr Pr Pr	CF ₃ CH ₂ OH	45	2	5	+16.8	526	
$785 \bigcirc -n_2 BF_4 \longrightarrow \bigcirc F_1 + \bigcirc F_1 + \bigcirc F_1 + \bigcirc F_2 + \bigcirc F_2 + \bigcirc F_3 +) F_3 + \bigcirc F_3 +) $	CH2CICH2CI	22	7	5	+8.3	529	

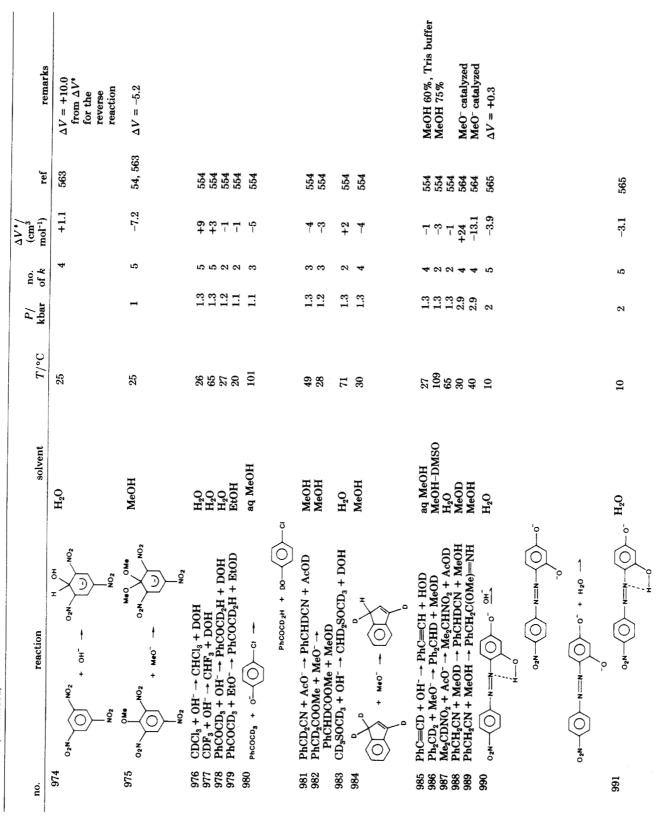
remarks								in the presence of	in the presence of	in the presence of	in the presence of 18-crown-6	in Dabco buffer in Tris buffer (pH 8.0)	in Tris buffer (pH 9.5)	in Tris buffer (pH 9.5)				DMSO 20 wt % $\Delta V = -3.2$
ref	529	529	529	529	529 500	529 529 529		530	530	530	530	50 9 510	510	510		531	532	533
$\Delta V^*/$ (cm ³ mol ⁻¹)	+8.2	+8.2	+8.3	+8.4	+8.8	+ + + 8.6 9.2		$+15.3^{r_{3}}$	$+15.8^{r_{3}}$	$+15.6^{r_{3}}$	+15.2 ^{r3}	-12 -11	-15	-12		+8.7	0	
no. of <i>k</i>	5	5	5	5	ъ.	പറം		5	5	5	5	4				6		က
P/ kbar	2	5	5	2	01 0	1010		2	2	7	73	2.1				5	5	8
T/°C	22	22	25	35	40	22 St G		50	50	50	60	25 25	25	25		4	-23	28
solvent	CH2CICH2CI	CH2CICH2CI	CH2CICH2CI	CH2CICH2CI	CH ₂ CICH ₂ CI	CH ₂ CICH ₂ CI CH ₂ CICH ₂ CI	4	CH2CICH2CI	CH2CICH2CI	CH2CICH2CI	CH2CICH2CI	H_2O H_2O	H_2O	H_2O		FSO ₃ H	FSO ₃ H	DMS0-CDCl ₃
reaction	$\underbrace{\left\{ \bigcirc \right\}}_{E_{1}} - M_{2}BF_{4} \longrightarrow \underbrace{\left\{ \bigcirc \right\}}_{E_{1}} - F + \underbrace{\left\{ \bigcirc \right\}}_{E_{1}} - CI$	$\underbrace{\left\langle \bigcirc\right\rangle}_{MeO} H_2BF_4 \longrightarrow \left\langle \bigcirc\right\rangle_{F} F + \left\langle \bigcirc\right\rangle_{HeO} F + \left\langle \bigcirc\right\rangle_{MeO} F$	$ \bigcup_{Me} - N_2 BF_4 - \sum_{Me} O - F + O - C $	PhN ₂ BF ₄ → PhF + PhCl				PhNN ⁺ BF₄ ⁻ → PhH + PhF + PhCl				$\left(\underbrace{\operatorname{Me_2}}_{2} \operatorname{Me_2} \operatorname{Me_2}_{2} $	$\left(\operatorname{Me_2N}(O)\right)_3 C^+ + H_2 O \longrightarrow \left(\operatorname{Me_2N}(O)\right)_3 COH + H^+$	$\left(E_{1_{2}N} - \left(\bigcirc \right)_{2} \right)_{2} C^{+} P_{1} + H_{2}O - $	$\left(E_{1,2}N - \bigcirc \right)_{2}^{2}CPnOH + H^{4}$	OME - OME - OME	3 1 3	
no.	786	787	788	789	06L	792 793		794	795	796	797	798 799	800	801		802	803	804


630 Chemical Reviews, 1989, Vol. 89, No. 3

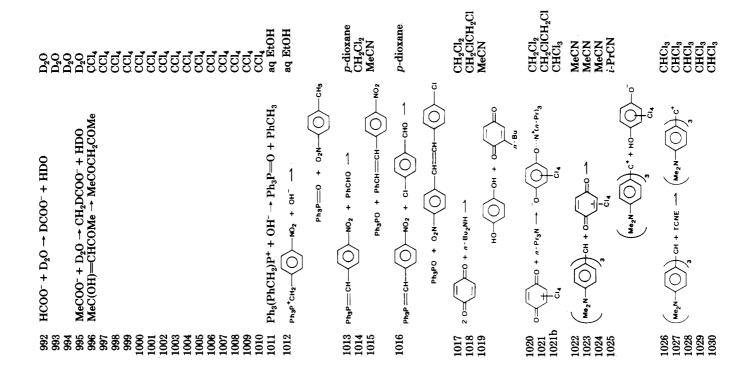

no.	reaction	solvent	T^{OC}	P/kbar	no. of k	cm^{3} (cm ³) mol ⁻¹)	ref	remarks
842		H20	40	1.8	5	+2.1	539	catalyzed by fully sulfonated
843		H_2O	40	1.8	5	+7.6	539	polystyrene catalyzed by 60% sulfonated
844 845		0 ⁷ H	40	1.1		-15	539	polystyrene w3
846		$H_2^{\rm H}O$	40	2	ດເຕ	-30 +20	540 540	x^3 y^3 , $\Delta V^* < 0$ at
847		H_2O	40	2	Ð	4-	541	P > 1 kbar catalyzed by Dowex
848	$CCI_3COOEt + H_2O \rightarrow CCI_3COOH + EtOH$	H_2O	25	2.1	7	-33	542	no catalyst used, [MeCN] = 0.02 mol/T_fNorio 1 =
849	EIOCOCM02CDO - O NO2 + H20 -		23	0.6	4	-21.4	543	0.2 mol/L
	MO2 EFOCCOCMe2COOH + HO -							
850	02N - 02N + H20 - 02N + M20 - 02N + M60H	H_2O	25	2.1	7	-24	542	ΔV* = -6.3 at above 0.15 kbar [NaClO4] = 0.2 mol/L
851	$Q_2 M - O - CH_2 COO - O - + H_2 O - MO_2$	aq acetone	24	0.7	4	-20.7	543	acetone 43 vol %, pH 7.5
	О -снзсоон + но-							
852	асси ₂ соо-{ + H ₂ 0 ассн ₂ соон + но-{	aq acetone	30	0.7	4	+8.7	543	acetone 86 vol %, pH 4.6
853	(EtO2PD	aq EtOH	25	1	9	-16	544	EtOH 50 vol %
854	(Е:0)2POH + HO-O-NO2 NO2 02N-OPO3 ²⁻ + H2O NO3	0₅H	43	4	19	-4.8	545	pH 12
855	ercoo-O-No2 + OH ⁻ - Ercoo ⁻ +	H_2O	25	67	5	-13.123	546	a4, b4


y4 v4, b5	c5, d5 e5, f5 in Tris buffer (pH 7.0)	eo, no in Tris buffer (pH 8.3) <i>i5, j5</i>	in Tris buffer (pH 9) k5, l5 pH 8.0 acetone 43 vol %,	pH 10.1 acetone 43 vol %, pH 12.5	acetone 43 vol %, pH 10.3	acetone 43 vol %, pH 10.7	pH 5.8
550 550	551 551 552	552 552	552 552 543 543	543	543	543	543
-21.9n ² -24.2n ²	-17.5 -13 -4	- 112	-4 -17 +16.5 +7.1	-17.9	-19.2	-14.8	+10.0
പറ	4 C C 4	പപ	NN 44	4	4	4	4
20	1.3 2 1.5	5 7 79	2 0.9 0.9	0.9	6:0	0.0	0.9
25	52 52 52 52	25 25 25	25 29 30 30	30	30	29	31

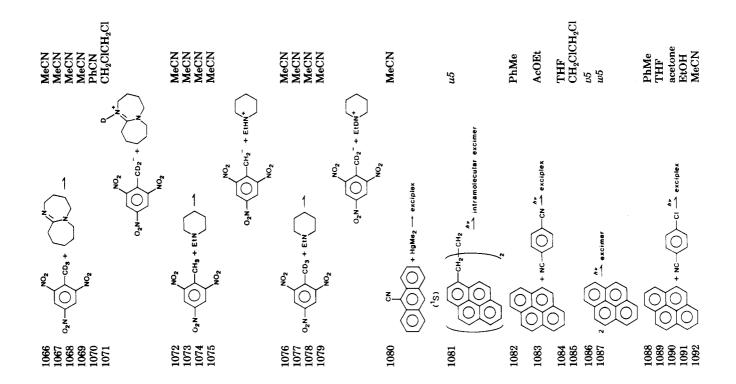




		MeOH 60 wt %	ionic strength 0.218	ionic strength 0.138	ionic strength 0.138 mol/L	ionic strength 0.138	ionic strength 0.138	ionic strength 0.218 mol/1.	ionic strength 0.138 mol/L	Et ₃ N catalyzed		in acetate buffer	(p. 1. 4. 1.0) in acetate buffer (nH 4.75)	$[NaClO_4] = 2 mol/L$	$[NaClO_4] = 2 mol/L$	$\begin{bmatrix} NaCIO_{4} \end{bmatrix} = 2 \mod /L, \\ \begin{bmatrix} Cu(CIO_{4})_{2} \end{bmatrix} = 0.05 \\ \mod /1 \pmod{2} \mod 5 \exp . \end{bmatrix}$	mot/2 (pri 2.39); Cu ²⁺ -catalyzed route ⁶⁵ [NaClO4] = 2 mol/L, [Cu(ClO4)2] = 0.05 mol/L (pH 2.95); Cu2 ⁺ cotolyzed route ⁶⁵	[Nacl04] = 2 mol/L, [Cu(Cl04]= 2 mol/L, [Cu(Cl04]= 0.05 mol/L (pH 4.4); ⁶⁶ Cu[Cu(OH) ₂] ² - cu[Cu(OH) ₂] ² - catalyzed route	[HClO ₄] = 2 mol/L	[HClO ₄] = 2 mol/L
554	555	555 555	556	556	556	556	556	556	556	557	558 558	559	559	560	560	560	560	560	561	561
-12	-6.3	-5.3 -3.6	-2.5	-4.0	-3.8	-6.8	-6.0	-7.5	-8.3	61-	-13 -13	-11.7	-10.8	-10.7	-10.0	6.0-	-1.4	+3.4	+5.4	+4.9
4	5	ດດ		3	e	5	5		5	4	ъ с		e	°	en	9	7	4	73	8
1.1	1			2.1	2.1	1.4	1.4		1.4	0.7	1.1	1.1	1.1	1.5	1.5	2.1	5	2.1		
MeOH 24	H ₂ 0 10	H ₂ O 25 aq MeOH 25		H_2^{0} 80	H20 90	H ₂ O 60	H_2O 70	H ₂ O 70	H ₂ O 80	none	Bu ₂ O 27.5 Bu.O 27.5		H ₂ 0 25	H ₂ O 20	H_2O 20	H₂O 20⁰5	H ₂ O 1	H ₂ O 20 ⁴⁵	H ₂ 0	H ₂ O
Ы	$\begin{array}{c} \mathbf{F}\mathbf{n}\mathbf{C}\mathbf{n}_2\mathbf{C}0\mathbf{M}\mathbf{e} + \mathbf{E}\mathbf{O}\\ 2 \mathbf{B}\mathbf{r}\mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}_2\mathbf{O}1^* = 0\mathbf{H}^- \rightarrow \mathbf{D}\mathbf{H}^- \rightarrow \mathbf{D}H$	CH2—CH3O3 + Br	H CI + CH + CHC + CHC + CI +		1	H COO ⁻ + ou ⁻ - ou ⁻ + o ⁻ + o ⁻ +		0	1	Ð	$\begin{array}{c} CH_{2} = (ICN)CH(M6)CH\\ 3 = Ph_{2}CN_{2} + Ph_{2}COH \rightarrow Ph_{2}CHOCOPh + N_{2}\\ 4 = Ph_{2}COH \rightarrow Ph_{2}CHOCOPh + N_{2}\\ 4 = Ph_{2}COH \rightarrow Ph_{2}CHOCOPh + N_{2}\\ 4 = Ph_{2}CHOCOPh_{2} + Ph_{2}\\ 4 = Ph_{2}CHOCOPh_{2}$ + Ph_{2}CHOCOPh_{2} + Ph_{2}\\ 4 = Ph_{2}CHOCOPh_{2} + Ph_{2}		6 β -D-glucopyranose $\rightarrow \alpha$ -D-glucopyranose	$.7 \alpha$ -D-glucopyranose $\rightarrow \beta$ -D-glucopyranose	948 β -D-glucopyranose $\rightarrow \alpha$ -D-glucopyranose	949 α -D-glucopyranose $\rightarrow \beta$ -D-glucopyranose	950 α -D-glucopyranose $\rightarrow \beta$ -D-glucopyranose	il α-D-glucopyranose → β-D-glucopyranose	22 CH ₂ OH HO HO HO H H HO H H OMO HO H OMO	3
931	932	933 934	935	936	937	938	939	940	941	942	943	945 945	946	947	6	ð	6	951	952	953


				<i>P/</i>	no.	$\Delta V^*/$ (cm ³		
10.		1000	n-/1		01 <i>k</i>	mol ⁻¹)	ret	remarks
954	HO HO HO H H H H H H H H H H H H H H HO HO	0 ² H			3	+5.0	561	[HClO4] = 2 mol/L
955		0 ² H			3	0	561	[HClO4] = 2 mol/L
956	CH ₂ OH	H ₂ O			2	+6.2	561	[HClO ₄] = 2 mol/L
	HOHH + H20 - D-Glucose + MeOH HOHH OH							
957	CH ₂ OH HOPh	H ₂ O			2	+2.9	561	[HClO ₄] = 2 mol/L
	OH H + H20 - D-GIUCOSE + PhOH H OH							
958	CH2OH	H_2O			2	+3.6	561	$[HClO_4] = 2 mol/L$
	Н Н Н ОМЕ + М20 - D- Маллозе + МеОН Н Н Н							
959	HO H	0 ₂ H			5	+6.1	561	$[HClO_4] = 2 mol/L$
	H H H H H H H H H H H H H H H H H H H							
096	H-0 H	Н₂О меон			2	-3.6	561	[HClO ₄] = 2 mol/L
196		H ₂ O ^{MéOH}	39	2.1	б	-3.9	561	[HClO ₄] = 2 mol/L
962		H ₂ O EtoH			5	-4.4	561	[HClO4] = 2 mol/L

	[LJABJ = 19-3 mmol/kg EtOH 50 vol % EtOH 50 vol %	ΔV = -19 ΔV = -18				
				570		
5667 5667 5667 5667 5677 5677 5677 5677	544 544 544	568 568 568	568	569 569, 569,	569 569 558 558 558 558 558 558	571 571 571 571 571
-2.8 -2.6 -2.6 -10.5 -10.5 -10.5 -2.6 -2.4 -2.4 -2.6 -2.4 -2.6 -	-4.5 +31 +32	-21 -19 -25	-29	61 24 67	-44 -35 -31 -25 -26 ²³ -28 ²³	-25.4 -29.6 -33.7 -32.0
ক বা co ক ক ক ক ক ক ক ক ক ক ক ক ক ক ক	10 9	686	5	0 4 0	55 5 4 4 4 5 5 5 7 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ຍຍາຍຍາຍ
∞∞∞∞	1 1 0.9	0.9 1 0.8	0.8	2.5 2.5	0.8 0.8 0.8 1.9 2.1 2.1 2.1 2.1	1.2 1.2 1.2 1.2 1.2 1.2
% % % % % % % % % % % % % % % % % % %	30 45 25	25 25	25	25 25 25	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	20 25 30 40 55



(Continued)	
ΠΛ	
TABLE	

remarks			t-BuOH 60 wt $\%$, $t5$ t-BuOH 50 wt $\%$, $t5$ catalyzed by AcO ⁻ t-BuOH 60 wt $\%$, $t5$ t-BuOH 50 wt $\%$, $t5$	$\Delta V = +20$ $\Delta V = +23$	$\Delta V = +36$ $\Delta V = -25.6$ $\Delta V = -15.3$	ΔV = -36.1	ΔV = -22.7
ref	558 558 558 558	571 571 571 571	572 572 554 572 572 572 573	573 554 554 574 575 575	576, 577 576, 577 576, 577 576, 577	578 578 578	578 579 579 578 579 580 580
$\Delta V^*/$ (cm ³ mol ⁻¹)	-29 ²³ -37 ²³ -33 ²³	-31.4 -35.7 -29.2 -37.0 -34.1	-31.4 -28.1 -1 -40.4 -34.7 -7	-11 -50 -55 -55	-47 -18.8 -15.3 -24.3	-14.6 -19.0 -12.7	-10.8 -5.7 -6.8 ²³ -6.8 ²³ -9.0 -13.0 -7.4 -7.4
no. of <i>k</i>	5 1 5 5 2 2	ດດດດ		12 4 2	പറ പറ 🗙	പ പ	ດດດດດດດ
P/ kbar	1.8 2.1 1.6 2.1	$1.2 \\ 1.2 $	1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13	1 1.3 1.1 0.8			
T/°C	23 29 29 29	40 25 25 35 30 25 40	*********	55 29 00 23 25 39 23	8 8 8 8 8	2 2 2 2	25 25 4 55 2 0 0 25 25 3 4 5 5 2 0 0 25
solvent	MeCN MeCN MeCN i-PrCN	CHCI, CHCI, CHCI, CHCI, CHCI, CHCI,	aq t- $\dot{B}uOH$ aq t- $BuOH$ H_2O aq t- $BuOH$ aq t- $BuOH$ H_2O	H ₂ O <i>i</i> -PrOH aq MeOH <i>n</i> -Bu ₂ O cyclohexane cyclohexane	cycionexane PhMe CH ₂ Cl ₂ PhMe PhMe	CH ₂ Cl ₂ CH ₂ Cl ₂ MeCN	CH ₂ Cl ₂ MeCN MeCN MeCN MeCN PhCN CH ₂ CICH ₂ CI
reaction	$\left(Me_{2}N-\bigcirc\right)_{3}CD+O=\underbrace{\bigcirc}_{C 4}D=O-\underbrace{\bigcirc}_{C 4}D=O-\operatorname{O}-\underbrace{\bigcirc}_{C 4}D=O-O-\operatorname{O}-\operatorname{O}-\operatorname{O}-O-O-O-O-O-O-O-\mathsf$	$\left(Me_{2}N-O\right)_{3}CH+TCNE \longrightarrow \left(Me_{2}N-O\right)_{3}C^{4}$	$Me_{2}CHNO_{2} + I_{2} \rightarrow Me_{3}CINO_{2} + HI$ $Me_{2}CDNO_{2} + I_{2} \rightarrow Me_{2}CINO_{2} + HI$ $Ph_{2}CHOH + OH^{-} + MnO_{4}^{-} \rightarrow$ $Ph_{2}CO + HMnO_{4}^{2^{-}}$	$\begin{array}{l} Ph_{3}^{c}CDOH + OH^{-} + MnO_{4}^{-} \rightarrow \\ Ph_{3}CO + DMnO_{4}^{2} \rightarrow \\ Ph_{5}CO + DMnO_{4}^{2} \rightarrow PhCH(OH)Me \\ 2PhCOCH_{3} + BH_{4}^{-} \rightarrow PhCH(OH)Me \\ 2PhCHO \rightarrow PhCH_{2}OH + PhCOO^{-} \\ Me_{4}Sn + I_{2}^{-} \rightarrow SnMe_{3}I + MeI \\ Bt_{4}Sn + Br_{2} \rightarrow Bt_{3}SnBr + n^{-}BuBr \\ n^{-}Bu_{5}Sn + Br_{2} \rightarrow n^{-}Bu_{3}SnBr + n^{-}BuBr \\ n^{-}Bu_{5}Sn + Br_{2} \rightarrow n^{-}Bu_{3}SnBr + n^{-}BuBr \\ n^{-}Bu_{5}Sn + Br_{5} \rightarrow n^{-}Bu_{5}SnBr + n^{-}Bu_{5}SnBr \\ n^{-}Bu_{5}Sn + n^{-}Bu_{5}SnBr + n^{-}Bu_{5}SnBr \\ n^{-}Bu_{5}Sn + n^{-}Bu_{5}SnBr \\ n^{-}Bu_{5}Sn + n^{-}Bu_{5}Sn + n^{-}Bu_{5}Sn \\ n^{-}Bu_{5}Sn + n^{-}Bu_{5}Sn + n^{-}Bu_{5}Sn \\ n^{-}Bu_{5}Sn + n^{-}Bu_{5}Sn \\ n^{-}Bu_{5}Sn + n^{-}Bu_{5}Sn \\ n^{-}Bu_{5}Sn + n^{-}Bu_{5}Sn \\ n^{-}Bu_{5}Sn \\ n^{-}Bu_{5}Sn \\ n^{-}Bu_{5}Sn \\ n^{-}Bu_$	$o_{2}N - O - CH_{2}NO_{2} + HN = C(NMe_{2})_{2} - o_{2}N - O_{2}N - O_{2}N - CH_{2}NO_{2} + HN = C(NMe_{2})_{2} - O_{2}N - O_{2}N - CH^{-}NO_{2} + H_{2}N = C(NMe_{2})_{2}$	$0_{2}N - O_{2} - CD^{-}NO_{2} + HDN^{-}C(NMe_{2})_{2}$ $0_{2}N - O_{2} - CH_{3} + HN = C(NMe_{2})_{2} - O_{2} - O_{2$	$O_2 N - O_2 N O_2 + O_$
no.	1031 1032 1033 1034	1035 1036 1037 1038 1038	1040 1041 1042 1043 1043 1045	1046 1047 1048 1049 1050 1051	1054 1054 1055 1056	1057	1059 1060 1061 1062 1063 1063 1064

-

	w3 w3 w3, x3		based on fluorescence quenching		for the reverse reaction, $\Delta V^* = +46.8$ for the reverse reaction, $\Delta V^* = +26.0$	
579 579 579 580 580	581 581 581 581	581 581 581 581	582	583	584 584 584 585 585	586 586 586 586
-11.3 -12.1 -10.8 ²³ -14.4 -8.0 -15.6	-6.5 -7.0 -7.2 -7.7	-7.2 -7.6 -7.9 -8.4	6 1	+24.8	+8.1 +7.7 +5.7 +5.7 +7.7 +19 +16	-5.8 -3.3 -2.2 -1.4 +0.9
ດດດດດ	က က က က	က က က	ø	П	ىبى⊶رى ∞ ∞ ∞	$\begin{smallmatrix}11\\&8\\01\\01\\01\end{smallmatrix}$
			3.5	2.5	3.5 3.5 1.5 2 2 2 2 2 3.5	
25 25 25 25 25 25 25 25 25 25 25 25 25 2	15 25 30	15 25 30 30	25	25	25 25 25 25 25 25	

(Continued)	
TABLE VII	

remarks			
ref	587 587 587 587 587 587 587 588 588 588	589 589 589 589 589 589 589 589 589 589	592 592 593 593 593 593 593 593 593 593
$\Delta V^*/$ (cm ³ mol ⁻¹)	-10.6 -9.6 -9.7 -9.7 -9.7 -112.6 -112.6 -9.7 -13.1 -13.1 -6 -6	+3.5 +3.7 +3.7 +13.2 +5.2 +5.2 +15.2 +15.2 +15.2 +15.2 +15.2 +15.2 +15.2 +15.2 +15.2 +15.2 +15.2 +15.2 +15.2 +15.2 -9.1 -9.1	+16.3 +19.5 +18.7 +20.3 +6.5 +9.4 +11.2 +11.2 +13.2 +15.0 +17.1 +14.9
no. of <i>k</i>	8 1 1 1 1 1 1 1 1 0 E	<pre>/> /> // //</pre>	2 1 1 1
P/ kbar		00	255 255 255 255 255 255 255 255 255 255
T/∘C	25 25 25 25 25 25 25 ambient ambient	ambient ambient ambient ambient ambient 30 50 50 60 60 60 20 20 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
solvent	<i>i</i> :-PrOH (CD ₃) ₂ CDOD MeOH CD ₃ OD PhMe C ₆ D ₅ CD ₃ <i>n</i> -hexane C ₇ -C ₆ H ₁₁ Me H ₂ O D ₂ O	<i>n</i> -hexane <i>cy</i> -C ₆ H ₁₁ Me <i>x5</i> paraffin oil <i>j</i> -BuOH MeOH heptane heptane heptane heptane heptane PhMe PhMe PhMe PhMe PhMe PhMe PhMe PhM	PhMe PhMe PhMe PhMe PhBr Me ₃ CO THF PhMe PhMe hexane
reaction	Ph ₂ CO + SH $\xrightarrow{h_2}$ Ph ₂ COH + S $\xrightarrow{\circ_3} \xrightarrow{\circ_4} \xrightarrow{\circ_4} \xrightarrow{\circ_3} \xrightarrow{\circ_3} \xrightarrow{\circ_5} \xrightarrow{\circ_5}$	trans singlet perpendicular singlet $ \begin{array}{ccccc} & & & & & & \\ & & & & & & & \\ & & & &$	× × × × × × × × × × × × × ×
no.	1093 1094 1095 1096 1096 11096 1100 1100	1103 1104 1105 1106 1107 1108 1110 11110 11112 11113 11114 11113 11116 11116 11116 11116 11116 11116	1121 1122 1123 1124 1126 1128 1128 1128 1128 1130

[NaCl] = 1 mol/kg; for dissociation,	ΔV [*] = +8.9 MeOH 5%; [NaCl] = 1 mol/kg; for discontion	$\Delta V^* = +6.9$ $\Delta V^* = +6.9$ MeOH 10%; [NaCI] = 1 mol/kg; for discontation	$\Delta V^* = +4.3$ $\Delta V^* = +4.3$ [NaCI] = 1 mol/kg; for dissociation, $\Delta V^* = -7.1$	$[KNO_3] = 1.5 mol/kg;$ for dissociation,	$\Delta V^{*} = +13.3$
594	594	594	594	594	595
0	-1.1	-5.3	-4.4	-0.7	+140
1.5 4	4	4	4	4	4
1.5	1.5	1.5	1.5	1.5	. 1
20	H 20	1 20	30	20	25
H20	aq MeOH	aq MeOH	H ₂ O	H ₂ O	H_2O
1132 2 000 $\rightarrow dimer$	we ₂ n [°]	1134	1135	1136 3 3 3 3 3 3 3 3 3 3	1137 $Gd^{3+}_{(0)}$ + vesicle $\rightarrow Gd^{3+}_{(i)}$
1132		1134	1135	1136	1137

8 hi Other activation volumes in aq NaBr and urea solutions ¹¹ 14.3 wt % acetone-d₆, 14.3 wt % acetone, 51.1 wt % DMF-d₇, 20.3 wt % amide. ¹¹ 40 vol % benzene-d₆, 40 vol % toluene-d₈, 20 vol % amide. \$ HMDSiO, 20.3 wt % amide. ⁿ¹ 20.4 wt % acetone-d₆, 10.2 wt % acetone, 65.5 wt % toluene-d₈, 3.9 wt % amide. ^{o1} 52.7 wt % acetone, 4.1 wt % HMDSiO, 43.2 wt % amide. p^{1} 10 wt % acetone- d_{6} , 30 wt % acetone, 40 wt % toluene- d_{8} , 20 wt % amide. q^{1} 69 wt % CHCl₃, 27 wt % pyridine- d_{5} , 4 wt % amide. r^{1} 40 wt % pyridine- d_{5} , 40 wt % amide. r^{1} 40 wt % pyridine- d_{5} , 40 wt % amide. r^{1} 40 wt % acetone, 20 wt % amide. r^{1} 40 wt % acetone, 20 wt % amide. r^{1} 40 wt % acetone, 20 wt % amide. r^{1} 40 wt % acetone, 20 wt % amide. r^{1} 40 wt % acetone, 20 wt % ace toluene-d₉, 9.3 wt % acetone, 9.2 wt % amide. *1 19.9 wt % acetone, 69.7 wt % CD₂Cl₂. ^{y1} 20 wt % toluene-d₈, 30 wt % benzene, 30 wt % acetone-d₆, 20 wt % amide. ¹⁴ 0 wt % CD₂Cl₂, 20 wt % CH₂Cl₂, 20 wt % acetone-d₆. ²² 40 wt % CD₂Cl₂, 20 wt % D₂O, 20 wt % H₂O. ²² 50 wt % benzene, 43 wt % acetone-d₆. ²⁴ 40 wt % CD₂Cl₂, 20 wt % D₂O, 20 wt % H₂O. ²² 50 wt % D₂O, 4 wt % H₂O. ²² 80 wt % D₂O, 20 wt % H₂O. ²³ 50 wt % benzene, 43 wt % acetone-d₆. ²⁴ 20 wt % D₂O, 20 wt % D₂O, 20 wt % D₂O, 20 wt % D₂O. ²⁴ 50 wt % D₂O. ²⁴ 50 wt % D₂O. ²⁴ 50 wt % D₂O. ²⁵ 50 wt % D₂O. ²⁵ 50 wt % D₂O. ²⁵ 50 wt % D₂O. ²⁴ 80 wt % D₂O. ²⁵ 50 wt % D₂O. ²⁴ 80 wt % D₂O. ²⁵ 50 wt % D₂O. ²⁵ 80 wt % D₂O. ²⁵ 50 wt % D₂O. ²⁵ 80 wt % D₂O. ²⁵ 50 wt % D₂O. ²⁵ 80 wt % D₂O. ²⁵ 50 wt % D₂O. ²⁵ 80 wt % D₂O. ²⁶ 80 wt % D₂O. ²⁰ 80 D_2O , 20 wt % methanol- d_4 . $h^2 TO$ wt % acetone- d_6 , 20 wt % methanol- d_4 , 10 wt % D_2O . ¹² 30 wt % acetone- d_6 , 30 wt % benzene, 20 wt % toluene- d_8 , 20 wt % amide. ¹² 40 wt % CD_2Cl_2 , 20 wt % acetone- d_6 , 20 wt % amide. ^{k2} In the presence of piperidine. ¹² -22.6 cm³ mol⁻¹ ($P \le 2.5$ kbar). ^{m2} Activation volume was calculated on the basis of the rate constants at $P \leq 3$ kbar. ⁿ²Calculated by T.A. by means of $\ln k = a + bP$. ^{a2}In the presence of diisobutoxymethane (2 mol/L) and ethyl-N-propyl-1,3-oxaazacyclopentane (4 mol/L). ⁷² Pressure effects on the photolysis are also studied. ⁴² Although the rates for Me₃SiOOCMe₃Ph and Ph₃SiOOCMe₃ in several solvents were also measured, In k was found to increase in stepwise fashion. ²²Styrene is emulsified by sodium lauryl sulfate. ²²Styrene is emulsified by be the preequilibrium of the cycloaddition. ^{a3} From (partial) molar volumes. ^{a3} Calculated on the assumption that ΔV for EDA complex formation is -6 cm³ mol⁻¹ reacts with 2,2,6,6-tetramethylpiperidin-1-oxyl forming 1-hydroxy-2,2,6,6-tetramethylpiperidin, and the adduct formation is followed by measuring the hydroxylamine concentration in the reaction mixture. κ^3 The initial product isomerizes under the reaction condition to a 2-pyrazoline derivative. $\kappa^3 \Delta V$ is the partial molar volume ^{c1} Coalescence temperature range. 53.2 wt sodium dodecyl sulfate. "Styrene is emulsified by "Aerosol OT". "Styrene is emulsified by "Teric GX13". x2 ΔV* for the reverse reaction becomes positive at ca. 1.4 ¹³The adduct p2 In the presence of N-propyl-1,3-oxaazacyclopentane (4 mol/L). q2 In the presence of 2-³²90% pentane-10% acetone. ²² Estimated from the initial slope. ^{a3} Electron donor-acceptor complex (EDA complex). ^{b3} Formation of EDA complex is assumed difference between the final product and the reactants. ΔV in other solvents are also given. ¹³ Determined dilatometrically. ¹³ Catalyzed by cetyltrimethylammonium % acetone-d₆, 9.2 wt % HMDSiO, 18.5 wt % amide. ^{m1} 69.8 wt % acetone-d₆, 9.9 wt ^{el} 60 vol % acetone- d_6 , 20 vol % TMS, 20 vol % amide. ^{fl} 77.5 wt acetone, 2.3 wt % HMDSiO, 49.5 wt % amide. ^{w1} 46.7 wt % pyridine-d₅, 39.4 wt % toluene-d₈, 10.1 wt % acetone, 3.8 wt % amide. ^{w1} 28.3 wt % pyridine-d₅, for cycloreversion of the 4+2 adduct is $-10 \text{ cm}^3 \text{ mol}^{-1}$. ^{e3} Contains ca. 15 vol % heptane or decane as an internal standard for GC analysis. hexamethyldisiloxane (HMDSiO), 20 vol % amide. Activation volumes were independent of temperatures in the vicinity of T_c^{-al} The rest is amide. ^{e1} 60 vol % acetone- d_6 , 12.7 wt % acetone, 9.8 wt % amide. ^{e1} 70.8 wt % acetone- d_6 , 23.9 wt % acetone, 5.3 wt % amide. The activation volume given is the one for the second step in eq A. 4 % ¹¹72.3 wt ^{b1}60 vol % CCl₄, 20 vol The solvent may be chlorobenzene. % acetone-d₆, 10.3 wt % HMDSiO, 20.4 wt % amide. TMS, 40% amide. 1,1-diisobutoxyethane (2 mol/L). acetone- d_6 , 20% are given in figures. bromide micelles. ΔV^{*} 69.3 wt ai 40% amide. kbar. and % 2

$$M + D \xrightarrow{d}{k} MD \xrightarrow{m} M + DOH$$

 $p^3 \Delta V$ for MD formation is +14 cm³ mol⁻¹. ⁴³ Equilibrium constants at various pressures are given. ¹³ For the overall decomposition of benzenediazonium rate. The total yield of the listed products amounts only to 34–74%. ¹³ Catalyzed by α -cyclodextrin in Tris buffer (pH 6.9). Activation volume given is he second step in eq B. $^{43}\Delta V$ for MD formation is +4 cm³ mol⁻¹. 13 Catalyzed by myristyltrimethylammonium bromide micelles. The activation volume given is the one for the second step in for MD formation is +15 cm³ mol⁻¹. $n^3 \Delta V$ for MD formation is +3 cm³ mol⁻¹. n^3 In the presence of styrene-acrylic acid copolymer latex. For detail, see for the second step in eq tetrafluoroborate. ΔV the original. сн Г the one eq A.

$$CD + S \stackrel{K}{\longleftrightarrow} CD - S \stackrel{k_2}{\longrightarrow} acyl - CD \stackrel{k_3}{\longrightarrow} CD + P$$
(B)

 $^{\omega}\Delta V$ for CD–S formation is -2 cm³ mol⁻¹. ^{a3} Catalyzed by poly(vinyl alcohol) 30% acetalyzed with o-formylbenzenesulfonic acid. ^{a3} Catalyzed by poly(vinyl alcohol) 23% af Catalyzed Activation volume given is the one for the second step in eq B. acetalyzed with o-formylbenzenesulfonic acid. ³³ Catalyzed by dodecyl hydrogen sulfate micelles. ²³ Calculated by T.A. by means of $\ln k = a + bP + cPa$. ¹³ ΔV for CD–S formation is -3 cm³ mol⁻¹. ^{u3} Catalyzed by β -cyclodextrin in Tris buffer (pH 6.9).

by CTAB micelles in Tris buffer (pH 8.3). Activation volume given is the one for the second step in eq C.

$$S \xrightarrow{K} MS \xrightarrow{\pi_m} M + D$$

out a the amile. "KOH-KH₂P0₄ buffer. "A Catalyzed by β -cyclodextrin. Activation volume given is the one for the second step in eq. "⁴ Derived from the apparent rate constants in the presence of β -cyclodextrin. The presence of β -cyclodextrin is the one for the second step in eq. C. "⁴ ΔV for MS formation is +11 cm³ mol⁻¹. "⁶ Catalyzed by β -cyclodextrin in Tris buffer (pH 9.0). Activation volume given is the one for the second step in eq B. $^{45} \Delta V$ for CD–S formation is +10 cm³ mol⁻¹. "⁶ Catalyzed by γ -cyclodextrin in Tris buffer (pH 8.3). Activation volume given is the one for the second step in eq B. $^{45} \Delta V$ for CD–S formation is 0 cm³ mol⁻¹. "⁶ Catalyzed by α -cyclodextrin in Tris buffer (pH 8.3). Activation volume given is the one for the second step in eq B. $^{45} \Delta V$ for CD–S formation is 0 cm³ mol⁻¹. "⁶ Catalyzed by α -cyclodextrin in Tris buffer (pH 8.3). Activation volume given is the one for the second step in eq B. $^{45} \Delta V$ for CD–S formation is -10 cm^3 mol⁻¹. "⁶ Catalyzed by α -cyclodextrin in Tris buffer (pH 8.3). Activation volume given is the one for the second step in eq B. $^{45} \Delta V$ for CD–S formation is -10 cm^3 mol⁻¹. $^{45} \Delta V$ for CD–S formation is -10 cm^3 mol⁻¹. $^{45} \Delta V$ for CD–S formation is -10 cm^3 mol⁻¹. $^{45} \Delta V$ for CD–S formation is -10 cm^3 mol⁻¹. $^{45} \Delta V$ for CD–S for the activation volumes are estimated to be -6 and -19, respectively. ^{ef} [OH⁻] = 1 × 10⁻³ mol/L.⁻^H In the presence of poly[(trimethylvinyl)benzylammonium chloride]. ^{ef} In the presence of sodium poly(styrene sulfonate). ^{hf} ΔV for MS formation is +14 cm³ mol⁻¹. ^{Hf} Tris buffer, pH 9; from pressure dependence of k_0 ; $k_0 = k_{0H}[OH⁻¹] + t_0$ $k_{T}[Tris]$. ^MTris buffer, pH 9; in the presence of pentylamine, zero order in the amine. ^MTris buffer, pH 9; in the presence of pentylamine; first order in the amine. ^MTris buffer, pH 9; in the presence of heptylamine; first order in the amine. ^MTris buffer, pH 9, in the presence of nonylamine; zero order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; first order in the amine. $^{pd}\Delta V$ for MS formation is +18 cm³ mol⁻¹. ^{ω t Tris buffer, pH 9; in the presence of hoptylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the amine. ^{ω} Tris buffer, pH 9; in the presence of nonylamine; second order in the presence of nonylamine; second pH 9; in the presence of nonylamine; second pH 9; in the pH 9; in the} for MS formation is $0 \text{ cm}^3 \text{ mol}^{-1}$. $n^{\Delta} \Delta V$ for CD-S formation is $0 \text{ cm}^3 \text{ mol}^{-1}$. $n^{\delta} \text{ Catalyzed by } \beta$ -cyclodextrin in Tris buffer (pH 8.3). Activation volume given is the one The second step in eq. B. p_6 is at 293 K are estimated from the rates at lower temperatures by means of Arrhenius equation. q^6 For pressure effects on enzyme-catalyzed mutarotation, see: Andersen, B. Acta Chem. Scand. B 1984, 38, 415. r^5 Dodecylammonium propionate. r^6 Dodecylammonium butyrate. r^6 Catalyzed by 2.4.6-trimethylovridine. Proton transfer to the base is rate-determining. $r^62,6,10,14$ -Tetramethylpentadecane. r^6 In sodium dodecyl sulfate micelles. r^6 In hexa-ESR. Ð and ^{y5} By means of 2,2,6,6-tetramethyl-4-piperidone (TEMPONE) spin label and and Tris-catalyzed rates, ion catalyzed $^{d4}k_{\rm m}$ is divided into hydroxide mol⁻¹ the base is rate-determining. $^{w5}2,6$, $^{x5}2,2,4,4,6,8,8$ -Heptamethylnonane. is $+9 \text{ cm}^3$ + Σ formation is +4 cm³ mol⁻¹. ^{c4} ΔV for MS formation 2,4,6-trimethylpyridine. Proton transfer to decyltrimethylammonium chloride micelles. $^{4}\Delta V$ for MS

D. Bond Cleavage and Formation (Entries 311 - 405)

It is expected that volume expansion should characterize this process, and all the available data bear it out; simple radical decompositions generally have activation volumes near $+10 \text{ cm}^3 \text{ mol}^{-1}$. The very large value for $(t-BuNO)_2$ is a consequence of the use of carbon dioxide as the medium at temperatures and pressures near the critical values;⁴¹⁷ variations in the size of the critical aggregates are likely to be responsible for the large positive value $(+60 \text{ cm}^3 \text{ mol}^{-1})$ and for the large compressibility of the transition state.

A complex situation arises in the many substrates studied that can potentially generate three particles by a two-bond scission process. It is now generally assumed that such reactions may be concerted but not synchronous; certainly, microscopic reversibility should then require that the trimolecular recombination also occur synchronously-an unlikely event. In fact, evidence for stepwise decompositions has now been found in many instances.⁷²³

As Neuman has often pointed out.⁴¹⁸ the possibility of return greatly complicates analysis of the highpressure effect in these reactions; he concludes that small ΔV_0^* values (<+5 cm³ mol⁻¹) suggest concerted cleavage and large ones hint at stepwise decompositions. It may at first seem strange that the more extensive breakup of molecules in concerted reactions would exhibit the smaller expansion; however, it should be realized that this is most likely to happen in strongly exothermic reactions with "early" transition states.

Other reactions involving cleavage of neutral molecules into neutral fragments include the decomposition of carbonic acid to give carbon dioxide and water³³⁸ and that of diacetone alcohol into acetone.433 Both are inhibited by the application of pressure.

Extending these argments, one would now logically expect that bond formation between neutral particles to give neutral products will be characterized by contraction. In free radical polymerization, the propagation step is indeed accelerated by pressure, as attested to by several data in Table VII; surprisingly, however, the dimerization of radicals such as occurs in the termination step of such polymerizations is almost always in*hibited* by pressure. Formally, the activation volume is thus positive. The reason is that these reactions have little or no activation energy barriers, and they are usually diffusion controlled. Since pressure is known to increase the viscosity of liquids, diffusion is inhibited. These reactions provide perhaps the clearest example that the uncritical application of absolute rate formalisms to very fast reactions may lead to nonsensical conclusions-such as the possibility of substantial volume increases accompanying bond formation from neutral radicals.

Kuzmin's data⁴⁴⁰ should be interpreted with knowledge of how they were obtained; the radicals were prepared by laser flash irradiation, meaning that the initial state is probably represented by a radical pair, and not by free radicals, in some of his examples. The warnings by Neuman mentioned earlier apply here as well.

The isotope dependence of the pressure effect on the internal atom abstractions occurring in the 2,4,6-tritert-butylphenyl radical (+5.3 cm³ mol⁻¹ for H transfer,

Activation and Reaction Volumes in Solution

 $-1.2 \text{ cm}^3 \text{ mol}^{-1}$ for D transfer) is an indication of the occurrence of tunneling in this reaction, as noted by Griller;⁴³⁹ however, the need for measuring these effects in different regions of temperature complicates more detailed interpretation. The extremely small value for the fission of the phosphoranyl radical (0.2 cm³ mol⁻¹ entry 405) may not be an indication of an early transition state alone, as suggested;⁴³⁹ the polar nature of the phosphate ester product may also in part be responsible.

E. Pericyclic Reactions (Entries 406-620)

The effect of pressure on pericyclic reactions has proved to be an enormously fertile area of research for two reasons. The first is that it furnishes one of the most reliable criteria about the concertedness of reactions involving multiple-bond reorganizations. Thus, as noted, one of the more easily recognized features of bond formation is the volume contraction that accompanies it; with multiple bonds, the correspondingly larger volume diminution is quite characteristic. The volume criterion is often the one of choice. Of the alternatives, stereoselectivity may be high even in diradicals if these are short-lived, and isotope effects are difficult to study to the degree of accuracy required to make a distinction. As we shall see below in several examples, the volume is useful as a criterion in essentially all types of pericyclic reactions. The second reason for the massive research effort lavished on pericyclic reactions is that the large contraction at very high pressure translates into several kcal/mol that can be subtracted from the free energy of activation, and in that way pressure becomes eminently useful for the synthetic chemist. Indeed, numerous laboratories have in recent years acquired 10- and 20-kbar presses for that very purpose.

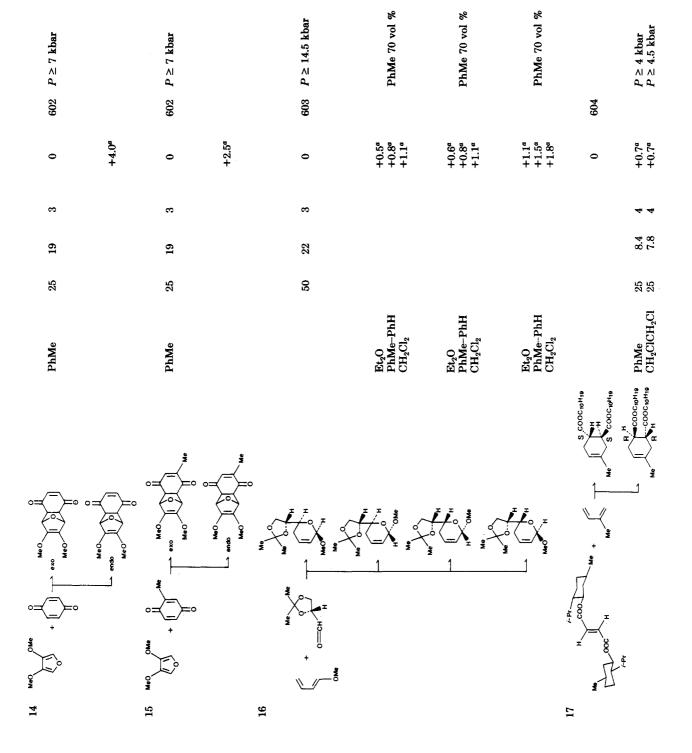
The first group we discuss here is that of the dyotropic reactions. In view of the know proclivity of RO-OR single bonds to break into radicals, it seems surprising that the positive activation volumes normally seen in those reactions are not observed in the present cases,⁴⁴² and it can only be concluded that they must occur concertedly:

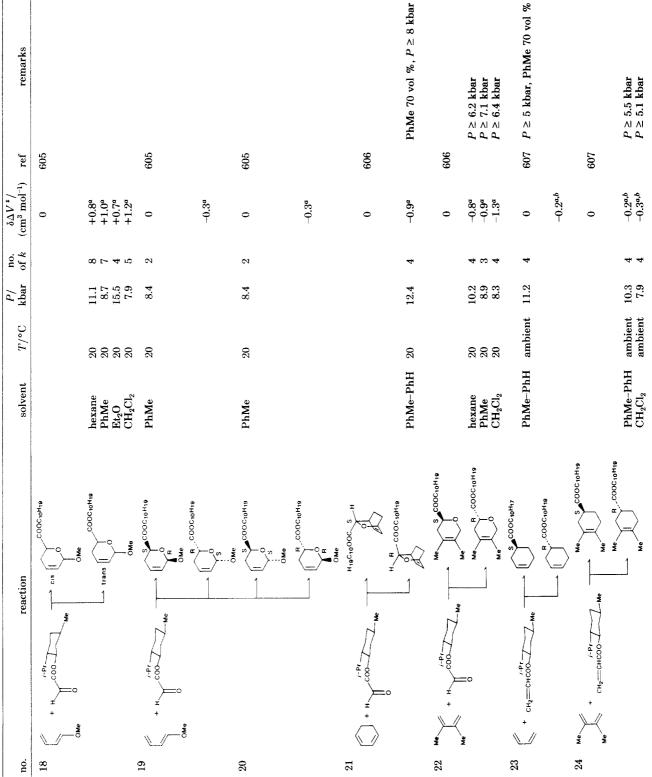
A second category in this group is that of the sigmatropic shifts, which may occur in concert or in stepwise fashion. The dicumyl isomer of entry 412 appears to undergo a "forbidden" thermal 1,3-shift, but this is certainly occurring via a radical pathway: it is retarded by pressure, and it yields side products resulting from radical disproportionation.

The two benzylic and benzhydrylic 1,4-shifts known clearly tell a story.⁴⁴⁴ The former of these two occurs with retention (chiral PhCHD group used) and it has a large negative activation volume; the reaction is clearly concerted. In the second one, although the concerted pathway is obviously also allowed, the diradical mechanism becomes the preferred mechanism, perhaps for steric reasons. The activation volume is now indeed positive, and this conclusion derives further support from the complete racemization observed with one p-chlorophenyl group and from the CIDNP displayed by the product as it is formed.⁷²⁴ The 1,5-shift examples are all concerted as allowed by virtue of orbital symmetry and as demonstrated by the transition-state contractions; however, quite a bit of variation is seen in the magnitude of the ΔV_0^* values. Presumably variable degrees of charge separation occur in these processes. The value of $-10 \text{ cm}^3 \text{ mol}^{-1}$ observed in the oxy-Cope rearrangement is typical for Cope and Claisen rearrangements; the very small negative value for bullvalene was therefore disappointing to those of us who hoped to use this pressure effect to squeeze semibullvalene into a homoaromatic state.⁴⁴⁵ It appears that with these superfast 3,3-shifts, the early stretching of the cyclopropyl bond is an important characteristic of the reaction, as foreseen by computational chemists.⁷²⁵ Finally, the 1,3-shift of the triphenylmethyl nitride to give the nitro isomer is a stepwise reaction in spite of the negative activation volume; ionization and ion solvation are surely responsible for the contraction in that case.

A few electrocyclic ring openings have been studied under pressure. Cyclic structures generally have higher densities, as one can readily verify from handbook data on isomeric hydrocarbons, and indeed, as Plieninger⁴⁵⁰ showed in one case (entry 425), the reaction volume for the opening of a cyclobutene is positive. The transition state is at a minimum in volume, however; presumably, the act of bringing all substituents together in one plane is responsible. This fact is also behind the difference in sign between the ΔV_{0}^{*} values for aromatization of Dewar benzene and of the hexamethyl homologue.⁴⁵¹

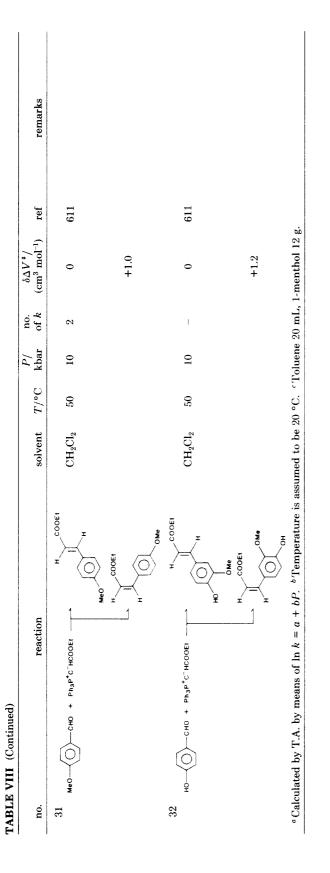
A large amount of information has been accumulated on cycloadditions. The decarboxylation of the β -lactone⁴⁵² of entry 429 almost certainly begins by ratecontrolling ionization; there is no other way to explain the deep minimum in the volume profile.




The very large negative activation volumes in [2 + 2] cycloadditions of TCNE had previously been noted.¹ The reason is the formation of a zwitterionic intermediate. This is foreshadowed in the contraction occurring in the preliminary charge-transfer step;⁴⁵³ in many cases, the formation of the second bond leads to expansion as the zwitterion charges are neutralized. In this case, the volume profile has a quite deep minimum, the more so the less polar is the solvent. This means that the reverse reaction is also accelerated by pressure.⁴⁶¹

New examples of the powerful pressure-induced acceleration of Diels-Alder reactions continue to be reported; invariably the transition-state volumes are close to or even smaller than the product volumes. The phenomenon, its mechanistic implications, and the synthetic applications are well-known, and the new cases that have been reported all appear similar. They include Jenner's extensive examination of hexachlorocyclopentadiene as the diene.⁴⁶⁵ In view of the wellknown tendency of chlorine to stabilize radicals,^{725,726}

no.	reaction	solvent	$T/^{\circ}C$	P/kbar	no. of k	$\delta \Delta V^*/(\mathrm{cm}^3 \mathrm{mol}^{-1})$	ref remarks	KS.
H	[PhCOO••Me] _{age} → PhCOOMe → DhCOO• + •Ma	PhCI	96	1.9	4	0	424	
2	[Me0C0CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CO0Me] _{case} → 2Me0C0CH ₂ CH ₂ CH ₂ CH ₂ .	PhMe	70	9.8	4	8 + 0	422	
ę	$\rightarrow MeOCO(CH_2)_6COOMe$ PhCOO + PhCH=CH_2 \rightarrow PhCOOCH_2CHPh	PhMe	60	4	9	+5	596	
4	$P_{\rightarrow}^{-1}L_{\rightarrow}^{+1}CO_{2}^{-1}$ $P_{\rightarrow}^{-1}CO_{2}^{-1}+CO_{2}^{-1}CMeCOOMe \rightarrow PhCOOCH_{2}CMeCOOMe \rightarrow Ph' + CO_{2}^{-1}$	РһМе	60	2	9	+21	596	
5	$\begin{array}{cccc} PhCMe_{2}O & \rightarrow D_{2}O\\ PhCMe_{2}O & \rightarrow PhCOMe + Me^{\bullet}\\ PhCMe_{2}O' + PhOMe \rightarrow PhCMe_{2}OH + PhOCH_{2}\bullet\\ \end{array}$	PhOMe	170		9	0 1 16	597	
9	$CH_2(O-\dot{t}^{-}Bu)_2 + t - BuO^{\bullet} \rightarrow CH(O,\dot{t},Bu)_2 + t - BuO^{\bullet}$ $CHMe(O-\dot{t}-Bu)_s + t - BuO^{\bullet} \rightarrow CMe(O,\dot{t},Bu)_s + t - BuOH$	none	130	10.1	5	0 0 9 6a	412 1:1 mixture of the two acetals	e two acetals
7	$PhCMe_{2}O^{\bullet} + PhMe \rightarrow PhCMe_{2}COH$ $PhCMe_{2}O^{\bullet} + C_{6}D_{5}CD_{3} \rightarrow PhCMe_{2}COD$	none	126	7	5	0.2 -4.1	598	
œ	O	PhCI	130	2.5	4	0	663	
	ON I Provide Contraction					8.94		
6	$\int_{n-Pr}^{n-Pr} \frac{r - Bu 0 \cdot 1 - hexens}{n - Pr} + CON$	PhCI	150	10	9	0	599	
						-4.5		
10	ососнимелет нсооснимелет нсооснимелет	none	130	10.1	5	0	600	
11	$ \begin{array}{c} & & & \\ & &$	none	130	9.8	4	L	601	
12	O O O O O O O O O O O O O O O O O O O	none	130	9.8	5	0 26	601	
13		none	130	5	4	0	415	
						-11		


TABLE VIII. Activation Volume Differences

 $\mathbf{29}$

this would seem to be an example particularly well suited to accommodate a diradical pathway, as Bartlett had found while using chloroethylenes as dienophiles.⁷²⁷ We recall here also that Stewart⁷²⁸ had found chloroprene to be subject to both a diradical and a concerted dimerization pathway and that the latter was accelerated much more by pressure than the former. But no evidence for competing pathways was found by Jenner; furthermore, (*E*)- and (*Z*)-olefins gave adducts with complete retention. The new examples include the reactions of furans and of nitroso compounds.

The reactions of TCNE with styrenes appear to be zwitterionic [2 + 8] cycloadditions, as judged by the large negative activation volumes and by the sensitivity of the rates to solvent polarity.⁴⁶¹ A number of additional variants may be found among entries 543-550. Entry 542 is a rare example of a species capable of undergoing an internal Diels-Alder reaction.⁴⁷⁵ Its volume profile appears similar to that of the intermolecular type, although both activation and reaction volumes are somewhat less than average; indeed, synthetic chemists have found that the intramolecular variety does not respond to pressure quite as favorably. A few examples are now also known of retro-Diels-Alder reactions in which the negative activation volume of the forward reaction is larger than the reaction volume. As required then, the reaction in the opposite direction is also accelerated by pressure. This is valuable proof that this minimum cannot be dismissed as due to imprecise measurements.480

In dipolar [2 + 3] cycloadditions, the activation volume once again approaches the overall contraction in magnitude, and thus this evidence complements the extensive work of Huisgen showing the concerted nature of the reaction.⁷²⁹ These contractions tend to be somewhat smaller than in Diels-Alder reactions, presumably due to the loss of the dipole.

The [4 + 6] cycloaddition of tropone, previously reported⁷³⁰ to be characterized by similar but small volume contractions in both product and transition state, has been extensively reinvestigated by Takeshita, ^{473,486,487} who finds these contractions to have essentially normal values (thus, the mechanistic conclusions remain the same).

Ene reactions have made their appearance among the pericyclic reactions that have been investigated at high pressures; once again, the large accelerations suggest a concerted pathway.⁴⁸⁸ Klärner examined the competition among the five dimers formed in the reaction of 1,3-cyclohexadiene; in a study reminiscent of Stewart's,⁷²⁸ he concludes that the endo-Diels-Alder and [4 + 6] ene product form concertedly, while the other products arise via a common diradical.

The study by Turro and Moss⁴⁹³ is the first report of a pressure effect in the cheletropic addition of flashgenerated carbenes to olefins. The additions are stereospecific. The volumes of activation are somewhat less negative than those of Diels-Alder reactions, and these workers were cautious in their conclusions. It seems to the present authors that the reaction volumes will in all likelihood also be less than those in [4 + 2] cycloadditions; thus, most schemes to calculate molar volumes include a special correction for the cyclopropane moiety.⁷³¹ When this knowledge becomes available, the $\Delta V^*/\Delta V$ ratio may prove to be as high as those of concerted cycloadditions. Brower has reported⁴⁹⁵ the oxidation of hydronaphthalenes by various species, including coal. The large negative values rule out initial homolytic reactions of the substrates. The author mentioned that the mechanism might be ionic. Concerted hydrogen transfer such as is known with diazene⁷³² would probably also have a large negative volume, but the use of the rather high temperatures required makes the further pursuit of this question difficult at present.

F. Heterolysis and Neutralization (Entries 621–717)

The generation of electrically charged species in solution by heterolytic bond cleavage is a process wellknown to be characterized by a large volume contraction due to tight solvation of the ions, a phenomenon first referred to as electrostriction by Drude and Nernst.⁷³³ This chemistry has been reviewed extensively before,¹ and relatively little has been added in the intervening years. Solvolysis of Coates' chloride (entry 666) was found to have an activation volume less negative than that of *tert*-butyl chloride under the same conditions, and this was attributed to charge delocalization in the pentacyclic cation.⁵⁰⁴ The reversal of sign in ΔV^{\dagger} of entry 670 was observed by Whalley.⁵⁰⁶ Additional examples were recently reported by him;⁷³⁴ his interpretation rests on the fact that at extreme pressures, solvent compressibilities and hence electrostriction are small, so that the expansion due to bond cleavage in $S_N 1$ heterolysis becomes dominant. Indeed, the reversal does not appear in S_N2 solvolyses, in which covalent solvent bonding to the incipient carbocation compensates for the cleavage. The expansion upon pairing of ammonium and picrate ions⁵⁰⁸ is also noteworthy.

Charge neutralization of cationic organic dyes such as Malachite Green and Crystal Violet has a long history in high-pressure chemistry; this began with the report by Laidler in 1959 that this neutralization is strongly accelerated by pressure.⁷³⁵ It was quite an unexpected finding. In one reinvestigation, it was noted⁵⁰⁹ that the actual direct neutralization was retarded and that a competing indirect one via rate-controlling addition of neutral water to the cation was the reaction that Laidler had really observed (see also entries 798-801). Further work by Isaacs^{449,512} has shown, however, that the matter is not completely resolved: in several nonaqueous solvents in which this complication cannot play the same role, the cation-anion reactions are also accelerated. It may be that the approach of the ions tends to focus charges more disperse in the separate ions, and hence increase electrostriction rather than diminish it.

G. Displacement Reactions (Entries 718–758)

Since bond formation and cleavage occur simultaneously in this type of reaction, the volume change is usually small in the transition state; futhermore, charge dispersal between attacking and departing anions may offset the small volume decreases that are usually observed. Eckert has reported⁵¹³ such a case (entry 718). Positive activation volumes were also observed⁵¹⁴ in two instances in which the substrate is a cation and the nucleophile and leaving group are neutral. These results are apparently cases of incursion of Sneen dis-

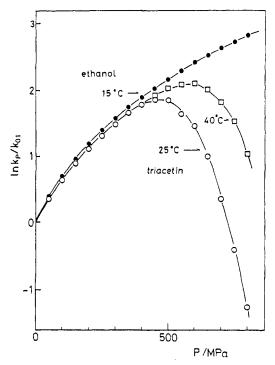
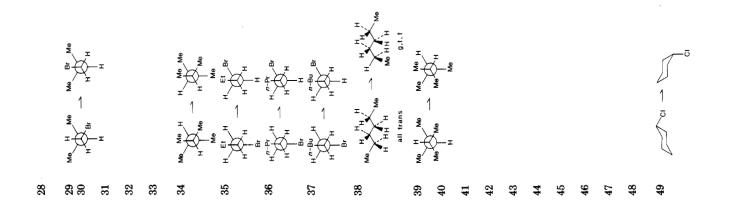


Figure 33. Effect of pressure on the isomerization rate of an azobenzene in triacetin.

placement mechanisms,⁷³⁶ in which the substrate heterolyzes initially to a cation-molecule pair, which is then captured in the rate-controlling step. In the second case, the incipient cation is less able to accommodate charge, and the reaction reverts to its normal directdisplacement mode at high pressure; this changeover is graphically visible in a deep minimum in the $\ln k$ vs P plot (Figure 33).

The remaining entries in this group are all Menschutkin reactions: displacements involving neutral substrates and nucleophiles with ion-pair products. Negative activation volumes are then expected and obtained in all instances.

H. Cationic Reactions (Entries 759-803)

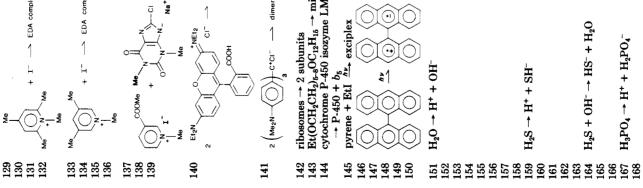

Many phenyldiazonium cation decompositions have been studied at high pressure; all activation volumes are positive, with an average $\Delta V_0^* \simeq +11 \pm 3 \text{ cm}^3 \text{ mol}^{-1}$ in about 40 cases. Such a large expansion can only be reconciled with complete and unassisted bond cleavage. This conclusion has later also been reached by means of studies of the heavy isotope effects involved.⁷³⁷ It is of interest that the results are compatible with the further finding by Zollinger⁵²⁸ that nitrogen isotope scrambling in the cation occurs during the reaction; evidently a cation-nitrogen pair forms that is subject to return to some degree.

Entries 802 and 803 represent the only two cases so far of degenerate cation reactions studied at high pressure; the needs for NMR analysis, superacid media, and, often, low temperatures make this chemistry rather inaccessible to the high-pressure investigator. The Wagner-Meerwein equilibration must occur via the so-called nonclassical ion as transition state, and the expansion observed⁵³¹ lends strength to the interpretation offered⁷³⁸ earlier for the small pressure sensitivity of *exo*-2-norbornyl substrates as compared to *endo*-2norbornyl substrates; it involved the charge delocali-

TABLE IX. Reaction Volumes for Chemical Processes

remarks	by Raman spectra	by Raman spectra by Raman spectra	$C_2H_4Cl_2 20 \text{ vol }\%$	C,HACI, 30 vol %	by IR spectra, C ₂ H ₂ Cl ₂ 5, 10 vol %	by Raman spectra	by Kaman spectra, C,H,Br, 10 vol %	by Raman spectra,	by Raman spectra,	by Raman spectra, C ₂ H ₄ Br ₂ 20 vol %	by Raman spectra	by Raman spectra by Raman spectra,	BuCl 40 mol % by Raman spectra, BuCl 40 mol %	by Raman spectra by Raman spectra,	BuCl 40 mol % by Raman spectra, BuCl 40 mol %	by Raman spectra	by Aaman spectra, BuBr 40 mol %	by raman spectra, BuBr 40 mol %	by Raman spectra	by Raman spectra, BuBr 40 mol %	by Raman spectra, BuBr 40 mol %	by Raman spectra by Raman spectra,	BuCl 80 mol % by Raman spectra, BuCl 60 mol %	by Raman spectra, BuCl 40 mol %
ref	612	613 614	119	*10	615	613	614	614	614	614	612	616 617	617	616 617	617	616 617	/10	/10	616	617	617	616 617	617	617
$\Delta V^b/\ ({ m cm}^3\ { m mol}^{-1})$																								
$\Delta V^a/{ m cm}^3$ (cm ³ mol ⁻¹)	-1	-2.7 -3.8		0.0	-2.9	-5.2	-4.5	-4.5	-2.0	-1.8	-1.3	-1.5 -1.8	-0.1	-0.8 -0.5	0	+2.0	0.1-	10.0	+0.6	-0.9	+0.2	+0.5 +0.1	-0.4	-0.6
no. of K	2	ى ھ	, o	\$	12		ç		9		2	10		10								11		
P/ kbar	33	2.3	• <i>и</i>	0	10		2.5		3.6		က	2.1		2.1								2.5		
$T/^{\circ}\mathrm{C}$	25	ambient 22	6	4	22	50	77	22	22	22	25	ambient ambient	ambient	ambient ambient	ambient	ambient	amolent	annoient	ambient	ambient	ambient	ambient ambient	ambient	ambient
solvent	neat	neat hexane	havana		Me ₂ CHEt	neat	Me ₂ CHEt	Me2CHEt	MeCN	MeCN	neat	neat hexane	Me0H	neat hexane	МеОН	neat hevene	Mean	HUDAMI	neat	hexane	MeOH	neat hexane	hexane	hexane
reaction		- /	1			Ξ						0		٤.					-					
no.	1	cv co	· ·	F	5	9		80	6	10	11	12 13	14	15 16	17	18	61 UG	8	21	77	53	24 25	26	27

by Raman spectra, BuCl 40 mol %	by Raman spectra by Raman spectra, D.D. 20 mol of	bubr oo muu % by Raman spectra, BuBr 60 mol %	by Raman spectra, BuBr 40 mol %	by Raman spectra, BuBr 40 mol %	by Raman spectra	from sound velocity	from sound velocity measurements	by Raman spectra												
617	616 617	617	617	617	612	618	618	618	619	620	620	620	620	620	620	620	620	620	620	621
-0.5	-1.7 -0.8	-0.3	-0.5	-0.7	6.0-	-0.8	-1.0	-0.5	-1.1	-3	₽-	*-	- 2	- 2	9	9	L-	. <i>L</i> -	8-	-2.3
					2	12	10	13	10	9	9	9	9	9	9	9	9	9	9	6
					3	5.5	5	9	7.4	1	1	1	1	1	1	1	1	1	Ţ	5.6
ambient	ambient ambient	ambient	ambient	ambient	25	ambient	ambient	ambient	30	-30	-34	-37	-40	-43	-46	-49	-52	-56	-60	25
MeOH	neat hexane	hexane	hexane	MeOH	neat	neat	neat	neat	neat	neat	neat	neat	neat	neat	neat	neat	neat	neat	neat	neat


	remarks	by ¹ H NMR spectra, lactam 10 mol %	by ¹ H NMR spectra, lactam 10 mol %	by ¹ H NMR spectra, lactam 10 mol %	by ¹ H NMR spectra, lactam 10 mol %	by IR spectra	by IR spectra	by IR spectra	by IR spectra, from C=O stretching	by IR spectra, from C-Cl stretching	[KCl] = 1 mol/L, 0.1 mol/L acetate buffer, hv visible spectra	by visible spectra	[KCl] = 1 mol/L, 0.1 mol/L acetate buffer, bv visible spectra. d	by visible spectra by visible spectra
	ref	622	622	622	622	623	623	623	624	624	625	626	625	626 626
	$\Delta V^{o}/$ (cm ³ mol ⁻¹)													
	$\Delta V^a / (cm^3 mol^{-1})$	-0.6	+1.2	+1.6	+1.5	-1.2	+0.5	+1.3	-1.5	-1.6	+0.2	+0.2	+0.8	+0.2 +0.3
	no. of K		œ			en e	4	5	7	6	7	25	10	31
	$P/{ m kbar}$		6.1			73	2.5	2.1	10	12	9	115	6	144 125
	T^{C}	35	35	35	29	25	25	25	25	25	ambient	22	ambient	22 22
	solvent	CHCI ₃	CHCI ₃	CHCl ₃	CHCl ₃	CS_2	CS_2	CS_2	CS_2	CS_2	H_2O	ల	H_2O	ч v
IABLE IA (CONTINUEU)	no. reaction	50 50 Ma Ma Ma Ma Ma Ma Ma Sa - Cis Sa - Cis Cis Cis Cis Cis Cis Cis Cis	v v v v v v v v v v v v v v			54 s-cis trans the other conformers $-H$ s-trans the other conformers $-H$ s-trans	55 the other conformers $\stackrel{H}{\longrightarrow} \stackrel{H}{\overset{H}{\longrightarrow}}$	56 Ithe other conformers $H = H + H + H + H$	57 Me C	58 H 4 H H H Mo H			61 H ₂ N MMe ₂ MMe ₂ MMe ₂ MMe ₂	63 63 Me ₂ N Me ₂ N Me ₂ N Mue ₂ Me ₂ N Mue ₂

[KCl] = 1 mol/L, 0.1 mol/L acetate buffer,	by visible spectra by visible spectra by visible spectra	by IR spectra by IR spectra	by UV spectra by IR spectra	by LR spectra by UV spectra by UV spectra	by UV spectra by IR spectra	by IR spectra	by IR spectra	by IR spectra	by IR spectra	by ultrasonic absorption	by ultrasonic absorption by ultrasonic absorption by ultrasonic absorption by ultrasonic absorption				
625	626 626	628 628	629 630	630 631 631	631 632	632	632	632	632	633	634 634 634 635	636	636 636	637 637 637 637 637	637
										-0.6	-0.3 -0.7 -0.4 -0.3				
+3.9	+0.1 +0.5	-1.3 -1.3	+0.4 -2.4	-1.8 -6.1	-5.1 -1	7	မို	ကို	?			-22.3	-6.9 -29.2	-4.0 -6.9 -5.2 -5.8 -5.8	-5.4
9	20 23	ດ	99	400	9							9	6 6	4040 4	4
e	130 144	1	6.4 1	1 6.4 6.4	6.4							1.5	1.5 1.5	1.5 1.5 1.5 1.5 1.5	1.5
ambient	22 22	20 60	25 20	22 23 80	25 26	25	24	25	30	25	25 25 25	25	25 25	25 25 25 25	25
H ₂ O	gu	ccit	heptane CCI ₄	CCI4 hexane hexane	hexane CCI4	ccit	ccı	റവ്യ	cCI	H_2O	H20 H20 H20 H20	CH2CICH2CI	CH2CICH2CI CH2CICH2CI	CHCI ₃ CH2,CICH2CI CH03 CH2,CICH2CI CHCI3 CHCI3	CHC1 ₃
NE12 N			I → dimer • dimer	$PhOH + Et_2O \rightarrow PhOHOEt_2$ $PhOH + n - Pr_2O \rightarrow PhOHOPr_3$	$\begin{array}{l} \text{PhOH} + n\text{-}\text{Bu}_{2}\text{O} \rightarrow \text{PhOH}\text{OB}u_{2} \\ \text{PhOH} + \text{PhNO}_{2} \rightarrow \text{H-bonded complex} \end{array}$	H H - Donded complex	PhOH + - H-bonded complex	-O)-OH + (C)-OH + (C)	- H-bonded complex	CH ₂ —CHCH ₂ OCH ₂ CH ₂ OH + H ₂ O →	<i>n</i> -PrOCH ₂ CH ₂ OH + H ₂ O → association <i>n</i> -BuOCH ₂ CH ₂ OH + H ₂ O → association <i>i</i> -BuOCH ₂ CH ₂ OH + H ₂ O → association <i>i</i> -BuOCH ₂ CH ₂ OCH ₂ CH ₂ OH + H ₂ O → association association	Phylec=CH2 - TCNE2' - C	$PhMeC=CH_2 + TCNE \rightarrow EDA complex$ $PhMeC=CH_2 + TCNE \rightarrow CON_2$	CH ₂ =CPhMe + TCNE → EDA complex CH ₂ =CPh ₂ + TCNE → EDA complex Ph H TCNE → EDA complex	Ph Ph H + TCNE EDA complex
64	65 66	67 68 88	69 70 21			76	77 _{Ph}	78 1-	79	80 C]	82 83 83 83 83 83 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85	85 P	86 P1 87 Phi	5 36 CI	≖´ <u>}</u> ⊥´ 63

(Continued)	
XI	
TABLE	

remarks	by UV spectra by UV spectra by UV spectra					by means of visible I ₂	by means of CT	absorption band by means of visible I ₂ absorption band	by means of CT	ausorptuon pand by means of visible I ₂ absorption band	by means of CT absorbion band						EtOH 95 vol % EtOH 95 vol % EtOH 95 vol % EtOH 95 vol %
ref	638 638 638	637 637	637 637	453 454 454 457	457	639 640	641	640	641	640	641	642 642 642	643 643	644 644	644 644	645 645 645	646 646 646 646
$\Delta V^b/ \ ({ m cm}^3 \ { m mol}^{-1})$	-																
$\Delta V^a/$ (cm ³ mol ⁻¹)	-11.4 -9.0 -4.3	-20 -21	-18 -25	-10.3 11.0 -5.8 -5.7	-3.5	-1.9 -6.7	-7.5	-8.1	-10.0	-14.6	-13.5	-5.9 -5.3 4.0	$^{-10.5}_{-8.9}$	-12.9	-11.4 -9.7	-14.5 -12.3 -10.1	-7.5 -5.6 -5.4 -4.3
no. of K	0 0 0	6	4 6	4 ت ت		Ω 4	4	4	4	4	4	ດີດ	ים סי	o vo	പറ	ດດດ	ວດວວ
$\frac{P}{kbar}$	1.6 2 1.6	1.5 1.5	1.5	1.5 1.5		4.1 3.3	3.3	3.3	e	ŝ	°,	1.6 1.6 1.6	1.6 1.6	1.6	1.6 1.6	1.6 1.6 1.6	0000
$T/^{\circ}C$	23 23	25 25	25 25	25 25 25	25	25 25	25	25	25	25	25	25 40 60	25 60 60	25 25	40 60	25 60	20 20 50
solvènt	CH ₂ ClCH ₂ Cl CHCl ₃ hexane	CHCI ₃ CH ₂ CICH ₂ CI	CHCI ₃ CH ₂ CICH ₂ CI	CHCI CHCI CHCI CH2	CH2Cl2	CHCl ₃ heptane	heptane	heptane	heptane	heptane	heptane	hexane hexane hexane	hexane hexane	hexane	hexane hexane	hexane hexane hexane	aq EtOH aq EtOH aq EtOH aq EtOH
reaction	TCNE + A Mee EDA complex	CH2=CMePh' - CA	chemical contract of the contr	CH_2 —CH0Et + TCNE → EDA complex CH_2 —CH0- <i>n</i> -Bu + TCNE → EDA complex Me_2C —CH0Et + TCNE → EDA complex CH_2 —CH0Ph + TCNE → EDA complex	🕠 + TCNE EDA complex	$PhCH_2OH + TCNE \rightarrow EDA \ complex$ $Et_2O + I_2 \rightarrow EDA \ complex$		$Et_2S + I_2 \rightarrow EDA \text{ complex}$		$Et_2Se + I_2 \rightarrow EDA \text{ complex}$		PhH + I₂ → EDA complex	Me Me + I ₂ - EDA complex	- we	West 12 EUA complex	Mes — — I2 — EDA complex	+ 1 ⁻ -> EDA complex • Me
no.	95 95	97 98	99 100	101 102 103 104	105	106	108	109	110	111	112	113 114 115	116 117	119	120 121	122 123 124	125 126 127 128

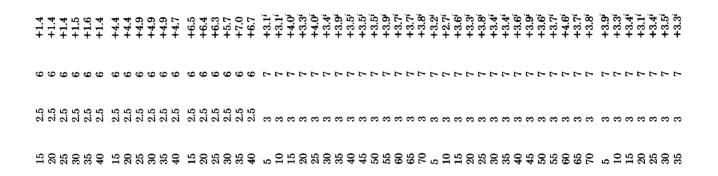
EtOH 95 vol % EtOH 95 vol % EtOH 95 vol % EtOH 95 vol %	EtOH 95 vol % EtOH 95 vol % EtOH 95 vol % EtOH 95 vol %	ionic strength 0.5 mol/L ionic strength 0.2 mol/L ionic strength 0.2 mol/L	[KCl] = 1 mol/L, 0.1 mol/L acetate buffer, d at 6 kbar $\Delta V = -5.1$	[KCl] = 1 mol/L, 0.1 mol/L acetate buffer, d	pH 7.5 pH 7.4		<i>h</i> ionic strength 0.02 mol/L by dilatometry by dilatometry	at 0.1 mol/L, by Raman spectroscopy
647 647 647 647	648 648 648 648	649 650 650	651	627	366 652 653	654 655 655 655 656 656 656	657 657 657 657 657 657 650 660 660 660	661 661 662 662 662
							-21.0 -22.1 -22.2	+8.2 +8.1 +6.8
-5.2 -3.7 -1.2 -2.6	-7.9 -4.4 -3.5	-4.0 -6.2 -6.5	-4.2	-17.7	-250 +15 -23	-6.5 -1.9 -1.9 -1.9 -2.3 -1.7	-22.4% -20.9% -20.9% -42.1% -13.1 -13.1 -15.1	-1 5.5 -23 -18
ດດວາວ	ດດດດ	$\begin{smallmatrix} 6\\10\\10\end{smallmatrix}$	12	œ	4 9 10	8 7 6 11 11		9
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2	2.1 3.5 3.5	10	10	2 1.6 1.1	3.4 10 10 10 10 10	ດ ດດດດດ ພິມ ດີດດີດດີດ	а 1.9
25 30 50	25 50 40 25	25 10 25	ambient	ambient	25 25	15 15 15 15 15	8 8 8 8 8 9 9 9 9 9 8 9 8 8 8 8 8 8 8 8	25 25 25 25
aq EtOH aq EtOH aq EtOH aq EtOH	aq EtOH aq EtOH aq EtOH aq EtOH	H20 H20 H20	H ₂ O	$H_2O$	$H_2^0$ $H_2^0$ $H_2^0$	hexane i-BuOH Bt ₂ O hexane i-BuOH MeEtCHCH ₂ OH	Н Н Н 100000000000000000000000000000000	Н ² 0000 Н ² 000
complex	A complex	—CI → EDA complex Na*	L dimer	dimer	→ micelles e LM ₂ ·cytochrome b ₅			



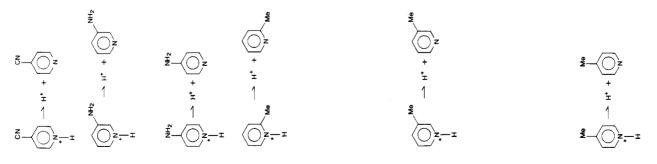
(Continued)	
IX	
TABLE	

reaction	SC I	solvent	T/°C	P/ kbar	no. of K	$\Delta V^a/(cm^3 mol^{-1})$	$\Delta V^b/$ (cm ³ mol ⁻¹ )	ref	remarks
H ₂ O	$\mathrm{H}_2$	0	25	2	9	ဆု		662	at 0.5 mol/L, by Raman spectroscopy
	H ² C	~ ~ ~	52 52 52				-16.8 -16.3	663 664	
$h_2 V U_4 \rightarrow H + H V U_4^{\prime}$ $H_0 O_4$	О°́Н О°́Н		22 72				-26.1 -25.9	664 664	
$HPO_4^{2^{n}} \rightarrow H^+ + PO_4^{3^{n}} \qquad H^{2}O_4^{2^{n}} \rightarrow H^{2}O_4^{2^{n}}$	H ₂ O		25 25				-24.0	663 664	
$P0_4^{3-} + H_2 0 \rightarrow HP0_4^{3-} + OH^-$	H ² C		52 72	2	8	+12	0.00-	662	at 0.1 mol/L, by Raman
	0°H		25				-16.0	659	spectroscopy by dilatometry
$-HO_{3}POPO_{3}H^{-} \rightarrow -HO_{3}POPO_{3}^{2-} + H^{+} \qquad H_{3}O$	H20 H_0		25 25				-20.7	659 650	by dilatometry by dilatometry
	H2O		25				-13.3	659	by dilatometry
$SO_a + H_aO \rightarrow H^+ + HSO_a^-$ $HSO_a \rightarrow H^+ + SO_a^-$ $HSO_a \rightarrow H^+ + SO_a^-$ $HO_a \rightarrow H^+ + SO_a^-$	H ₂ O		25 25				-23.1	665 663	
$\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	H20 H20		55 5				-26.0	665 665	
нс0 ₃ → H ⁺ + С0 ₃ ² R(0H), + H _* O → R(0H), - + H ⁺ H,	H ₂ O		22 22	1.6	y	-937	-29.2	663 666	AV at 1 khar
•	H ₂ 0		22		)		-6.0	658	ionic strength 0.02 mol/L
$AcUH \rightarrow H^{T} + AcU^{T} \qquad \qquad H_{2}U$	H20 H20		52 S2				-10.6 -11.5	658 667	ionic strength 0.02 mol/L
	$H_2^0$		25 25				-7.8	667	[urea] = 8 mol/L
-(	MeO.	Н	25 25				-12.0 -39.4	668 668	ionic strength 0.02 mol/L
$i \cdot PrCOOH \rightarrow H^+ + i \cdot PrCOO^-$ $\downarrow PrCOOH \rightarrow H^+ \pm i \cdot PrCOO^-$ $\downarrow DrCOOH \rightarrow H^+ \pm i \cdot PrCOO^-$ $\downarrow O$	H ₂ O U		25 95				-13.2	658 658	ionic strength 0.02 mol/L
-00	0°H		52 52				-12.3	699	10111 70.0 119 90200 011101
	MeO	Н	22 72				-10.7	668 668	
MeOH	MeO	Н	25				-32.2	668	
$H_2O$	H ₂ O		25	1.2	2	-13.5	-13.3	670	
+ + 1	H ₂ O		25	1.2	2	-13.3	-13.3	670	
Me OH Me Of Me OH Me Of Me OH Me OH Me OH Me OH Me OH OH OH OH	MeO	H	25				-41	668	
Me									

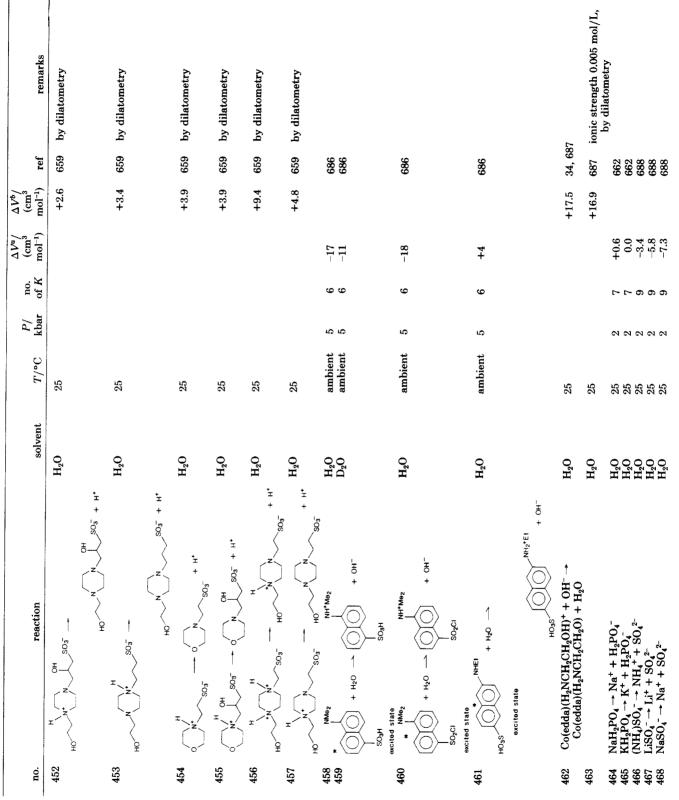
		by dilatometry by dilatometry by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dilatometry	by dìlatometry
		yd yd	by	by	by	by	by	by	by	by	by	by	by	by	by	by	by	by
668	668	671 671 671	671	671	671	659	629	671	671	671	671	671	671	659	659	659	659	659
-43	-54	-12.1 -12.5 -10.0	-18.3	-9.6	-23.4	-9.1	-25.0	-14.0	-14.0	-17.2	-17.2	-12.1	-22.9	-12.5	-19.9	-5.1	-24.4	7.7-
25	25	25 25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
HC	НС		_	_				_	_	_								
MeOH	МеОН	H20 H20 H20	$H_2O$	$H_2O$	$H_2O$	$H_2O$	$H_2O$	$H_2O$	$H_2O$	H ₂ O	$H_2O$	H ₂ 0	$H_2O$	$H_2O$	H ₂ 0	H ₂ 0	$H_2O$	H ₂ O
HOOC HOUCH IN THE HOUCH	Me tonization of nigericin Me Me	^{M6} HOOC(CH ₃ ) ₃ COOH → H ⁺ + -OOC(CH ₂ ) ₃ COOH -OOC(CH ₃ ) ₃ COOH → H ⁺ + -OOC(CH ₂ ) ₃ COO- meso-HOOCCH(Me)CH(Me)COOH →	$H^{+}$ + "OUCCH(Me)CH(Me)COH meso-OOCCH(Me)CH(Me)COOH $\rightarrow$ $H^{+}$ - OOCCH(Me)CH(Me)COOO $\rightarrow$	$d_{i}$ + -0.0000000000000000000000000000000000	$d_{J}$ -00CCH(Me)C(H(Me)COOH $\rightarrow$ H+ $d_{J}$ CCH(Me)COOH)	HOOCCH, $(CM_{c}CM_{c}CM_{c}CM_{c}CM_{c}CM_{c}M_{c}M_{c}M_{c}M_{c}M_{c}M_{c}M_{c}$				+ 1 + + 1 - + - + - - - 			+ ± 1	$\begin{array}{ccc} & & & & & \\ & & & & & & \\ & & & & & & $				
201	202	203 204 205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221


ued)
Continu
XI
BLE

	<ul> <li>ΔV^b/ (cm³</li> <li>mol⁻¹) ref remarks</li> </ul>	-16.4 659 by dilatometry	-19.9 659 by dilatometry	–10.7 659 by dilatometry	-12.3 659 by dilatometry	-22.3 659 by dilatometry	672 672 672 672 672 672 672		<ul> <li>673</li> <li>673</li> <li>673</li> <li>673</li> <li>673</li> <li>673</li> <li>674 △V at 1 kbar</li> <li>674 △V at 1 kbar</li> <li>674 △V at 1 kbar</li> </ul>	674 674 674 674 674 74 0V 674 0V 674 0V 674 0V 674 0V 674 0V
	$\Delta V^a/{ m cm}^3$ (cm ³ mol ⁻¹ )						-22.2 -28.1 -26.5 -29.8 -13.4 -11.3	-12.6 -7.0 -5.3 -4.1 -4.6	-8.7 -5.0 -4.5 -4.3 -24.8 -24.9 -25.8 -25.6	
	no. of K						<b>* * * * * * *</b> *	ىمى مى م <del>ە</del> 4	വെവവ വവവ	ഖ പ പ പ പ പ പ പ
	$\frac{P}{kbar}$							5 5 5 <del>1.</del> 2	0000 0000	000000000
	$T/^{\circ}C$	25	25	25	25	25	3 2 1 4 3 3 7 1 3 5 1 4 3 3 5 1	40 35 30 40 40	% % % <b>9</b> % % % %	40 33 32 25 40 33 25 55 40 35 25 40 55 55 55 55 55 55 55 55 55 55 55 55 55
	solvent	$H_2O$	$H_2O$	$H_2O$	$H_2O$	H ₂ O	Н ² 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H20 H20 H20 H20 H20	Н ² 000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 1200000000	н 1000000000 11000000000000000000000000
TABLE IX (Continued)	reaction	) T	HOOC CH4COOH HOOC CH2COOT	сн ₂ соо ⁻ -00с́ сн ₂ соо ⁻	скитоси — силисои + п сн ₂ соон сн ₂ соон сн ₂ соо ⁻ сн ₂ соо ⁻ силосон — снюносон + н ⁺	 	PhoH $\rightarrow$ H ⁺ + Pho ⁻ PhoH $\rightarrow$ H ⁺ + Pho ⁻ PhoH $\rightarrow$ H ⁺ + $\rightarrow$ C	)) b() + + 1 b) 5()	b → + + + + + + + + + + + + +	$\begin{bmatrix} c_{-} \\ c_$
TABLE IN	no.	222	223	224	225	226	227 228 230 231 232 233 233	234 235 236 237 238	246 245 245 245 245 245 245	247 249 250 251 252 253 253


	H ₂ 0	10	5	υ	+0.3		565	
$0_2N - O - N = N - O - 0^- + H_2O$								
→ so ³ ⁻ 0-(O)→ so ³ + H ⁺	$H_2O$	25				-18.4	659	by dilatometry
	H ₂ O	25				-12.5	659	by dilatometry
$NH_4^{\circ} \rightarrow H^{\circ} + NH_3^{\circ}$ $NH_3^{\circ} + H_2^{\circ} \rightarrow NH_4^{\circ} + OH^{\circ}$	H20 H20 0 0 0	25 25 100 200	0 0 0 0	====	-28.8 -31.7 -39.5	+6.6	658 675 675 675 675	ionic strength 0.02 mol/L
$\begin{array}{l} MeNH_8^+ \rightarrow H^+ + MeNH_2 \\ EtNH_3^+ \rightarrow H^+ + EtNH_2 \\ n\text{-}PrNH_8^+ \rightarrow H^+ + n\text{-}PrNH_2 \end{array}$	H20 H200 H20	250 25 25 25 25 25	5	11	-67	+2.4 +1.9 +3.4	675 658 658 667	ionic strength 0.02 mol/L ionic strength 0.02 mol/L
$i$ :PrNH ₃ ⁺ $\rightarrow$ H ⁺ + $i$ :PrNH ₂ $i$ :BuNH ₃ ⁺ $\rightarrow$ H ⁺ + $i$ :BuNH ₂	H ₂ 0 H ₂ 0	52 52 52	(	3	ļ	+4.7 +2.0 +0.6	667 658 658	<pre>[urea] = 8 mol/L ionic strength 0.02 mol/L ionic strength 0.02 mol/L</pre>
MeOH → Et ₃ NH ⁺ + MeO ⁻	MeOH MeOH MeOH	22 8 9 5 26 9 5	2 1.6 2.6	11 6 6	-47.7 -52.0 -59.0		676 676 676	
$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	н20 H20 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H200 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H2000 H20	\$\$ \$\$ \$\$ \$\$ \$\$ \$	۷	1	<b>†</b> 0	+7.6 +6.7 +5.5 +3.9 +3.3	678 678 678 678	
<b>2 2 2 2</b> + + + + + <b>1 1 1 1 1 1 1 1 1 1</b>	Н ² 0 000	88888			·	+2.8 +3.5 +3.5	678 678 678 678	
$\begin{array}{l} NH_{3}(CH_{2})_{0}NH_{3}^{+} \to H^{+} + NH_{3}(CH_{2})_{0}NH_{3} \\ NH_{3}^{+}(CH_{2})_{2}NH_{3}^{+} \to H^{+} + NH_{3}^{+}(CH_{2})_{3}NH_{3} \\ NH_{3}^{+}(CH_{2})_{3}NH_{3}^{+} \to H^{+} + NH_{3}^{+}(CH_{2})_{4}NH_{2} \\ NH_{3}^{+}(CH_{2})_{4}NH_{3}^{+} \to H^{+} NH_{3}^{+}(CH_{2})_{4}NH_{2} \\ NH_{3}^{+}(CH_{2})_{4}NH_{3}^{+} \to H^{+} NH_{3}^{+}(CH_{2})_{4}NH_{3}^{+} \end{split} \\ NH_{3}^{+}(CH_{2})_{4}NH_{3}^{+} \to H^{+} NH_{3}^{+}(CH_{2})_{4}NH_{3}^{+} \end{split} \\ NH_{3}^{+}(CH_{2})_{4}NH_{3}^{+} NH_{3}^{+} NH_{3}^{+} NH_{3}^{+} N_{4} \to N_{4}^{+} N_{4} \end{split} \\ N_{4} \to N$	Н Н 200000 10000	25 25 25 25 25				+2.8 +11.5 +10.1 +9.0 +8.1	678 678 678 678 678	
+++++ ================================	Н ² 0 1200000 1200000000000000000000000000	25 25 25 25 25 25 25 25 25 25 25 25 25 2				+6.4 +5.2 +5.7 +5.7 +5.7 +5.6 +2	678 678 678 678 678 679	

(Continued)	
EIX	
TABL	


ref remarks	672	669	672	672	669 669	640 6	612 679	672	672	680 EtOH 10.5 vol %, ionic	strength 0.04 mol/kg 680 EtOH 10.5 vol %, ionic	strength 0.06 mol/kg 680 EtOH 10.5 vol %, ionic	strength 0.08 mol/kg 680 EtOH 10.5 vol %, ionic	strength 0.10 mol/kg 680 EtOH 10.5 vol %. ionic										, -		681 681 681 681 681 681
$\Delta V^b/ \ ({ m cm}^3 \ { m mol}^{-1})$		+5.4			+4.3 +2.5																					
$\Delta V^a/$ $(\mathrm{cm}^3$ $\mathrm{mol}^{-1})$	+4.3	1.71	+2.5	+3.6			0.6+ 0.8+	+6.4	+7.8	+12.4	+9.4	+8.6	+7.8	+12.2	+9.6	+8.8	+9.8	+12.2	6.9+	+11.1	+11.4	+11.7	+12.6	+13.2	+14.4	+1.1 +1.1 +1.1 +1.1 +1.2 +1.2
no. of K	4-	÷	4	4		-	<del>1</del> 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	ပတ္တတ္တတ္
P/ kbar	1.5	1-0	1.5	1.5		- 4	15	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 5 5 5 5
T/°C	10	25 25	30	40	22 22	01	20	30	40	20	20	20	20	30	30	30	30	40	40	40	40	50	50	50	50	$\begin{array}{c} 15 \\ 25 \\ 33 \\ 40 \\ 35 \\ 30 \\ 35 \\ 30 \\ 30 \\ 30 \\ 30 \\ 3$
solvent	H ₂ O H	$H_2^{00}$	$H_2^0$	$H_2^0$	Н20 Н20	0 H	H _o O	H ₂ O	$\tilde{H_{20}}$	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	aq EtOH	${}^{\rm H}_{20}{}^{\rm H}_{20}{}^$
reaction	$PhNH_3^+ \rightarrow H^+ + PhNH_2$			DENIE Met a Ut + DENIEM.	$PhNHMe_2^+ \rightarrow H^+ + PhNMe_2$	NH3+ NH2	Me	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \frac{1}{2} + \frac{1}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\rangle$	NH ₃ * NH ₂	0 + + 1	ت >														Z + + 1 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
no.	295 296	297	298 208	662	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322 323 324 325 325 326



## 



Ks													/L									
remarks											by dilatometry	by dilatometry	[urea] = 8 mol/L	by dilatometry	by dilatometry	by dilatometry by dilatometry	by dilatometry	by dilatometry	by dilatometry			
ref	682	682	682	682	682	007 682	682	682	602	700	659	659	667 667	659	659 650	659 659	659	659	659	683	683	684 685 684
$\Delta V^b/ \ ({ m cm}^3 \ { m mol}^{-1})$											+0.2	+1.8	+0.8 +2.3	+4.6	+4.5 +43	+3.5	-3.1	+3.1	+10.5			-7.5 -5.9 +1.7
$\Delta V^a/{ m cm}^3$ ${ m cm}^3$ mol ⁻¹ )	+3.5	$+3.5^{1}$	+6.4	9.6 + 3.6	+3.7	+3.7	$+2.9^{i}$	+3.0	10 11	0.1										+1	1+	
no. of K	7	2		- I	- 1	- [-	9	9	u	>										4	4	
P/ kbar	3	en (	നം		ກີເ	0 00	2.5	2.5	о К	D i										1.5	1.5	
T/°C	40	45	66 t	55 20	09 29	60 20	25	25	9K	2	25	25	25 25	25	25 95	22 22 2		25	25	10-30	20	25 25
solvent	$H_2O$	$H_{20}$	$H_2O$	н ² С	н ² 0	H ₂ 0	Ч <u>,</u> 0	$H_2O$	О́Н		$H_2O$	$H_2O$	H ₂ 0 H ₂ 0	$H_2O$	Н ₂ О Н_О	H20 H20		$H_2O$	$H_2O$	$H_2O$	$H_2O$	$H_2^0$ $H_2^0$ $H_2^0$
reaction								Et Hr + O	z z E T T T T T T T T T T T T T T T T T T T						(HOCH,CH), NH ⁺ $\rightarrow$ (HOCH,CH), N + H ⁺ (HOCH,CNH, + $\rightarrow$ (HOCH, CNH, + H ⁺	$(HOCH_{3})_{2}CMe_{N}H_{3}^{+} \rightarrow (HOCH_{3})_{2}CMe_{N}H_{2}^{+} + H^{+}$ $(HOCH_{3}CH_{3})_{2}NH_{2}^{+} + O(HOCH_{3}CH_{3})_{2}NH_{2}^{+} + H^{+}$	(HOCH ₂ )3CNH2 ⁻ CH2CH2CH2CH2NHC(CH2OH)3 → (HOCH2)3CNHCH2CH2CH2CH2NHC(CH2OH)3 + H ⁺	(HOCH ₂ CH ₂ ) ₂ NH ⁺ C(CH ₂ OH) ₃ → (HOCH ₂ CH ₂ ) ₂ NC(CH ₂ OH) ₂ → H ⁺	$[(HOCH_3)_3CNH_3^+CH_3)_3CH_3 \rightarrow (HOCH_3)_3CNH_3^+CH_3)_3CH_3 \rightarrow (HOCH_3)_3CNHCH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_$		CH2CH(NHADICONHME CH2CH(NHADICONHME HN N'H + HN N	$\begin{array}{l} \begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ H_3N^+CH_2COOH \rightarrow H^+ + H_3N^+CH_2COO^- \\ \end{array} \\ H_3N^+CH_2COO^- \rightarrow H^+ + H_2NCH_2COO^- \end{array}$
no.	381	382	383	007 101	300 386	387	388	389	390		391	392	394 394	395	396 397	398 398	400	401	402	403	404	405 406 407



		MeCN 3 mol % MeCN 20.9 mol % MeCN 21.3 mol % 1,4-dioxane 60 wt % ionic strength 0.7 mol/kg
688 688 691 692 692 692 692 692 692 692 692	693 693 693 693 693 693 693 693 691 691 691 691 691 691 691 691 691 691	691 691 691 691 695 695 696 697 697 697 697 697 697 697 697 697
		-25 -7.4 -11.4 -11.3 -11.3 -11.3 -3.4 -3.4 -3.4 -3.4 -2.6 -2.2 -2.2 -13 -13 -14
$\begin{array}{c} -& -& -\\ -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -\\ -& -& -& -& -& -\\ -& -& -& -& -& -\\ -& -& -& -& -& -\\ -& -& -& -& -& -\\ -& -& -& -& -& -\\ -& -& -& -& -& -\\ -& -& -& -& -& -\\ -& -& -& -& -& -& -\\ -& -& -& -& -& -& -\\ -& -& -& -& -& -& -\\ -& -& -& -& -& -& -\\ -& -& -& -& -& -& -\\ -& -& -& -& -& -& -\\ -& -& -& -& -& -& -& -\\ -& -& -& -& -& -& -& -\\ -& -& -& -& -& -& -& -& -\\ -& -& -& -& -& -& -& -& -& -\\ -& -& -& -& -& -& -& -& -& -\\ -& -& -& -& -& -& -& -& -& -& -& -& -\\ -& -& -& -& -& -& -& -& -& -& -& -& -& $	-7.4 -7.4 -9.0 -9.1 -9.1 -9.1 -9.0 -11.6 -11.6 -11.6 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.	-11.7 -10.1 -9.1 -9.1 -11.5 -11.5 -11.5 -11.6 -11.6 -11.6 -11.3 -11.3
ດດດດດ Իດດດ ທ ເ	し し し し し し し し し こ こ こ こ こ こ こ こ こ こ こ	∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
	L.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1	1.5 1.5 1.4 4 4 4 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5
3 2 3 3 2 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
Н 1200000 200000000000000000000000000000	ооооооооооооооооооооооооооооооооооооо	H20 H20 H20 H20 H20 H20 H20 H20 H20 H20
469 $\text{KSO}_{4}^{-} \rightarrow \text{K}^{+} + \text{SO}_{2}^{2-}$ 470 $\text{RbSO}_{4}^{-} \rightarrow \text{Rb}^{+} + \text{SO}_{2}^{2-}$ 471 $\text{CsSO}_{4}^{-} \rightarrow \text{Rb}^{+} + \text{SO}_{2}^{2-}$ 473 $\text{MgSO}_{4}^{-} \rightarrow \text{Mg}^{+} + \text{NaSO}_{4}^{-}$ 473 $\text{MgSO}_{4}^{-} \rightarrow \text{Mg}^{2+} + \text{SO}_{4}^{2-}$ 474 $\text{NaSO}_{4}^{-} \rightarrow \text{Na}^{+} + \text{SO}_{4}^{2-}$ 475 $\text{KSO}_{4}^{-} \rightarrow \text{K}^{+} + \text{SO}_{4}^{2-}$ 476 $\text{MgCl}^{+} \rightarrow \text{Mg}^{2+} + \text{Cl}^{-}$ 477 $\text{MnSO}_{4} \rightarrow \text{Mn}^{2+} + \text{SO}_{4}^{2-}$	478 479 480 $CuSO_4 \rightarrow Cu^{2+} + SO_4^{2-}$ 481 482 483 $ZnSO_4 \rightarrow Zn^{2+} + SO_4^{2-}$ 486 486 486 487 487 487 487 487 488 489 489 491 493 494 493 494 494 494 494 494 494 494	494 495 496 497 498 498 498 498 499 498 498 498

520 $HgCl_3^- \rightarrow HgCl_2 + Cl^-$ 521 $HgCl_4^- \rightarrow HgCl_3 + Cl^-$ 522 $Co(en)_3Cl_3 \rightarrow Co(en)_3Cl_3^+ + Cl^-$ 523 $Co(NH_3)_6Cl_3 \rightarrow Co(NH_3)_6Cl_4^+ + Cl^-$ 524 $(n-Bu)_4NBr \rightarrow (n-Bu)_4N^+ + Br^-$ 525 $LiBr \rightarrow Li^+ + Br^-$ 526 $LiBr \rightarrow Li^+ + Br^-$ 527 $CoBr_3 \rightarrow CoBr_3 + Br^-$ 528 $CoBr_3^- \rightarrow CoBr_3 + Br^-$ 529 $CoBr_3^- \rightarrow CoBr_3^- + Br^-$ 531 $(n-Bu)_4N^- + n^-$	H ₂ 0 H ₂ 0 H ₂ 0 H ₂ 0				(l-lom	([-]~~~~		
$\begin{array}{l} HgCl_{2}^{2} \rightarrow HgCl_{3}^{3} + Cl^{-}\\ Co(en)_{3}Cl_{3} \rightarrow Co(en)_{3}Cl_{2}^{3} + Cl^{-}\\ Co(NH_{3})_{6}Cl_{3} \rightarrow Co(NH_{3})_{6}Cl_{2}^{3} + Cl^{-}\\ (n-Bu)_{4}NBr \rightarrow (n-Bu)_{4}N^{+} + Br^{-}\\ (n-Bu)_{4}NBr \rightarrow (n-Bu)_{4}N^{+} + Br^{-}\\ CoBr_{2} \rightarrow Co^{2} + 2Br^{-}\\ CoBr_{2} \rightarrow CoBr_{3} + Br^{-}\\ CoBr_{3}^{2} \rightarrow CoBr_{3} + Br^{-}\\ NiBr_{2}^{2} \rightarrow NiBr_{3}^{3} + Br^{-}\\ (n-Bu)_{4}NI \rightarrow (n-Bu)_{4}NI + 1r^{-}\\ \end{array}$	H20 H20 H20				1 101	1.1011	rer	remarks
$\begin{array}{l} m_{3}Cl_{2}^{*}+Cl^{*}\\ (NH_{3})_{6}Cl_{2}^{*}+Br^{*}\\ Bu)_{4}N^{+}+Br^{*}\\ Br^{*}\\ Br^{*}\\ Br^{*}\\ +Br^{*}\\ +N^{*}+r^{*}\end{array}$	H20 H20	20 20				င္	700	ionic strength 0.7 mol/kg
(NH2) ₆ Cl ₂ ⁺ + Bu) ₄ N ⁺ + Br Br Br Br H Br + Br + Br + Nr + r	Н20 Н20	07				<b>5</b> -	200	ionic strength 0.7 mol/be
$Br^{(1)}_{I}N^{+} + Br^{(2)}_{I}$ $Br^{-}_{I}Br^{-}_{I}$ $Br^{-}_{I}Br^{-}_{I}$ $+ Br^{-}_{I}$ $+ Br^{-}_{I}$	$H_2O$	25	57	5 C	-1.9		701	W /10111 1:0 1008-00
$\begin{array}{l} Virburtur = (n-bu)_4 N^2 + Br^2 \\ LiBr \rightarrow Li^2 + Br^2 \\ CoBr_2 \rightarrow Co^{24} + 2Br^2 \\ CoBr_3 \rightarrow CoBr_3 + Br^2 \\ CoBr_3^2 \rightarrow CoBr_3 + Br^2 \\ NiBr_4^2 \rightarrow NiBr_3 + Br^2 \\ (n-Bu)_i Ni \rightarrow (n-Bu)_i N^2 + 1^2 \end{array}$		25	2	5	-19		102	
Br Br N+ Br	acetone	25	9.8	α	0 21-		101	
Br Br N+ Br	i-BuCOMe	95	5	0	1 10		102	
Br-Br- Br-Br- N+	MaCN			D	0.12		20/	
- Br- + Br- N+		6.7	1.2	-	-14.8	•	702	
- B - F - F	acetone	25	5.5	-	-109		203	
+ + +	acetone	25	5.5	7	+5.9		002	
+ Br-	acetone	95	0 1	. ц	7.0		601	
+N.	acatorio	201	<b>C</b> • •	2,1	10.8		/03	
	arcente	07	3.9	ç	+4.3		703	
	acetone	25	2.8	×	-14.0		202	
	<i>i</i> -BuCOMe	25	1.7	œ	-93.8		00	
	MeCN	25	16				70	
	acatone	00	- 1 c	- 1	0.42~		202	
NaI $\rightarrow$ Na ⁺ + I ⁻		00	N	1	-21		04	
	MeCN	25	2.1	7	-33.4		60	
$VI \rightarrow VI \rightarrow Ir$	acetone	30	2	7	-95	• •		
	acetone	30	c	• ٢	22	-	04	
$CsI \rightarrow Cs^+ + I^-$	acotono	00	10	- 1	62-		04	
•	arcennie	00	2		-24	[~	704	
	THF	-7.0	0.6	7	15.4			
	THF			- 1	4.01-		1/	
	1 1 1		0.0	-	-15.0	2	71	
contact ion pair solvent-separated ion pair		<b>C.</b> Z-	0.6	2	-13.1	7	1	
	JH.I.	-1.9	0.6	2	-16.4		-	
	THF	1	0.6	5	-13.1	- [		
	THF	6		- 1	1.01		-	
$(n-Bu)_{4}N^{+}Pic^{-} \rightarrow (n-Bu)_{4}N^{+} + Pic^{-}$	DLU		0.0	-	-15.1	2	1	
		97	0.7	9	-61.6	5	08	
	PhCI-PhH	25	0.7	9	-54.5	LC,	80	
	PhCl-PhH	25	0.7	9	-57 3	) <u>и</u>	2	
	PhCl-PhH	25	2.0	<u>م</u>		0	0	
	PhCI-PhH	20			0.10-	õ	8	30 vol
		6.7 2.5	0.1	9	-48.5	ũ	80	
All $_{u_1} \rightarrow i_{u_2}$ (not identified)	HULLINU	55	0.7	9	-50.8	5	508	PhCI 50 vol 92
	neat	223	1	6	-84	2	2	
	neat	245	-		105	- 6	2	
$\operatorname{Gal}_{3(1)} \rightarrow \operatorname{Ions}$ (not identified)	neat	010			0.01	×	Q0/	
		200	-		-121	2	<u>5</u>	
	neat	293	1	10	-132	12	2	
	neat	310	-	5	196		2 1	
$Inl_{3(1)} \rightarrow ions (not identified)$	neat	950		- (	Det	V.	GU/	
		707	T	ß	-11	2	5	
	neat	301	l	9	-22	70	5	
	neat	380	7	6	-98		705	
	neat	498	-				0	
$Bil_{3(1)} \rightarrow ions (not identified)$		074	<b>_</b> ,	¢,	-35	20	705	
	ILEAL	1.64	-	7	<u>6.0</u>	705	5	
(1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	neat	481	1	œ	-10.4	705	) Li	
	neat	388	-	1				
	neat	430			# 1 > 7	CO/	0	
	noat	0017	- ,	01	-T.7	705	5	
	near	409	_	×	-3.4	705	5 C	
$I_{a(i)} \rightarrow ions$ (not identified)	near	492	ľ	6	-3.8	705	5	
	neat	139	1	7	-26	705		
	neat	159	_	11	06		2	
	neat	176			27	cn/	0	
$AI(SCN)^{2+} \rightarrow AI^{3+} + SCN^{-}$	U H			11	-35	705		
	0211	20	cr.	21	-0 -	20	706. 707	hy Raman gradinger
					ı	•		uy ruaman spectroscopy,

by Raman spectroscopy,	by Raman spectroscopy, ionic strength 2.8 mol/L	by Raman spectroscopy, ionic strength 2.8 mol/L	by Raman spectroscopy, ionic strength 2.8 mol/L	by Raman spectroscopy, ionic strength 2.8 mol/L	by Raman spectroscopy, ionic strength 1.9 mol/L	by Raman spectroscopy, ionic strength 1.9 mol/L	by Raman spectroscopy, ionic strength 2.1 mol/L	by Raman spectroscopy, ionic strength 2.4 mol/L	by Raman spectroscopy, ionic strength 2.4 mol/L	ionic strength 0.1 mol/kg	ionic strength 0.1 mol/kg	ionic strength 0.1 mol/kg	ionic strength 0.1 mol/kg	ionic strength 0.1 mol/kg	ionic strength 0.1 mol/kg	IOUIC SUBJUCT OF THE PARTY AND A PARTY AND															П	[crown] = 0.185 mol/L  [crown] = 0.060 mol/L	11	] = 0.211		[crown] = 0.144 mol/L [crown] = 0.202 mol/L
706, 707	706, 707	147 706, 707	706, 707	706, 707	706, 707	706, 707	706, 707	706, 707	706, 707	708 708	708	708	208 708	708	708	144	144	144	709	144	144	144	144 144	144	709	710	710	710	710	711	711	117	111	711	712	712 712
										+31.3	+22.4	+36.4	+30.7	+36.3	+53.2	+40.9 +39.8	+44.1	+44.4	+25.5	+44.4	$+43.3^{\circ}$	+52.57	$+54.6^{\prime}$	$+51.7^{i}$	+26.8	+6.9	+2.4	+2.5		+11.7	+12.1	+11.9	+12.9	+13.0	+9.0	+9.3
0	-7.3	-8.3 +11	6-	-19	+3	21	9	-15	-19																											
2	5	<b>6</b> 7	2	2	2	5	2	2	2																											
S	ŝ	3 N	3	en	က	ဗ	က	e,	en																											
20	20	20 20	20	20	20	20	20	20	20	25 87	52 72	25	52 X2	52 72	25	52 52	22	55	25 25	8 8	52 72	25	25 25	32	25	25	25	25	20	52 72	25	25 25	8 X	52	25	25 25
$H_2O$	H ₂ O	H ₂ 0 H ₂ 0	$H_2O$	$H_2O$	$H_2O$	$H_2O$	$H_2O$	$H_2O$	$H_2O$	$H_{20}$	H20 H,0	$H_{2}^{i}O$	H2O H O	H _o O	H ₂ 0	H ₂ 0	H2O H2O	0 ² H	$H_2O$	H2O H2O	H ₂ O	H ₂ O	H ₂ 0	H,0	H ₂ O	0°H	$H_{2}^{-}O$	H ₂ O	Ч ² О	н20 Н,0	H20	H ₂ O	H2O H2O	H ₂ O	$H_2O$	H20 H20
$M_n(SCN)^+ \rightarrow Mn^{2+} + SCN^-$		$\begin{array}{lll} & Pe(SCN)^{2+} \rightarrow Fe^{3+} + SCN^{-} \\ & & & Zn(SCN)^{+} \rightarrow Zn^{2+} + SCN^{-} \end{array}$	$4  \text{Zn}(\text{SCN})_2 \rightarrow \text{Zn}^{2+} + 2\text{SCN}^-$	5 $\operatorname{Zn}(\operatorname{SCN})_{4}^{2-} \rightarrow \operatorname{Zn}^{2+} + 4\operatorname{SCN}^{-}$	5 $\ln(SCN)_3 \rightarrow \ln^{3+} + 3SCN^-$	7 $\ln(SCN)_4^- \rightarrow \ln^{3+} + 4SCN^-$	8 $Hg(SCN)_4^{2-} \rightarrow Hg^{2+} + 4SCN^-$	9 $Th(SCN)^{3+} \rightarrow Th^{4+} + SCN^{-}$	$0  Th(SCN)_3^+ \rightarrow Th^{4+} + 3SCN^-$	$Mg^{2+} + H_2 edta^{2-} \rightarrow Mg(edta)^2$		$Co^{2+} + H_2edta^{2-} \rightarrow Co(edta)^{2-} +$		$Cu^{c_1} + H_2edta^c \rightarrow Cu(edta)^c$ $7_n^2^+ + H_cd_{10}^2^- \rightarrow 7n(ed_{10})^2^-$	Al ³⁺ + H ₂ edta ²⁻ $\rightarrow$ Al(edta) ⁻ +		9 $Mn^{2+}$ + edta ⁺⁻ $\rightarrow$ $Mn(edta)^{2-}$ o $C_{2}^{2+}$ $L_{2}^{2+}$ $(C_{2}^{2+})^{2-}$			$(3  Cu^{2^{+}} + edta^{+} \rightarrow Cu(edta)^{2^{-}}$			$\begin{array}{llllllllllllllllllllllllllllllllllll$					)3 EtNH ₃ ⁺ + 18-crown-6 $\rightarrow$ complex		)5 n-HexNH ₃ ⁺ + 18-crown-6 -+ complex 16 No ⁺ + 18-crown-6 -+ complex	·		)9 K ⁺ + 18-crown-6 → complex	0	12 $Rb^+ + 18$ -crown-6 $\rightarrow$ complex	13
570	571	572 573	574	575	576	577	578	579	580	581	582 583	583b	584	580 280	587 587	588	589	165	592	593	595 595	596	597	500	600	601	602	603	604	605 606	209	608	609	610	612	613 614

(Continued)
XI
<b>NBLE</b>
τ

Cs ⁺ + 18-crown-6 → complex Ca ²⁺ + 18-crown-6 → complex		00700					a	
· 18-crown-6 → ( + 18-crown-6 →	solvent	7-/1	kbar of	of A mo	mol - 1	(, Iom	101	remarks
+ 18-crown-6	$H_2^0$	25			Ŧ	+9.1	711	[crown] = 0.103 mol/L
+ 18-crown-6+	$\tilde{H}_{2}O$	25			Ŧ	+8.5	711	[crown] = 0.151 mol/L
+ 18-crown-6 →	H ₂ O	25			Ŧ	+8.7	711	[crown] = 0.180 mol/L
	$H_2O$	25			+2	+24.0	712	[crown] = 0.104  mol/L
	$H_2O$	25			+22.7	2.7	712	[crown] = 0.158 mol/L
	$H_2O$	25			+2,	+22.8	712	
Ba ²⁺ + 18-crown-6 → complex	0°H	25			+18.9	6.8	719	11
I	H _o O	25			+18.8	a	119	1
	H _c O	25			+19.0		101	
Na ⁺ + 15-crown-5> complex	O.H	36			-	0.01	710	1
		5			ř ·	0.0	717	
	$H_2O$	C7.			Ŧ	+8.4	712	[crown] = 0.153 mol/L
	$H_2O$	25			Ŧ	+8.8	712	[crown] = 0.209 mol/L
K ⁺ + 15-crown-5 → complex	$H_2O$	25			Ŧ	+8.2	712	11
	H ₀	25			Ĩ	18.0	614	1
	H.O	36						
Dh+ 1 If amount is commissed		20			Ŧ	0.0	21/	
T 10-CLOWII-D COMPLEX	H ₂ U	25			Ŧ	+4.4	712	[crown] = 0.116 mol/L
	$H_2O$	25			÷	+4.6	712	[crown] = 0.142  mol/I.
	H.O	25			Ť	+4.4	719	
$Cs^+ + 15$ -crown- $5 \rightarrow complex$	H	95					110	
		3 5					717	1
	<u>112</u> 0	07			+	+1.6	712	[crown] = 0.151 mol/L
	$H_2O$	25			Ŧ	6.1	712	[crown] = 0.226 mol/1.
$Ca^{2+} + 15$ -crown- $5 \rightarrow complex$	H _• O	25			Ŧ	10+	719	1
a	D.H.	9 č					10	I
+ 19. around - 1 according		32			Ŧ	J.Z, ±U.3	217	"
Valdminn - Limmin-71		07				0	712	[crown] = 0.101 mol/L
	$H_2O$	25			¥	+0.1	712	[crown] = 0.147 mol/L
Na⁺ + 12-crown-4 → complex	H,0	25			+0.1	11	719	II
	H_O	95			Ĩ	607	012	I
		2				7.7	717	
1		07			-	0	712	[crown] = 0.206 mol/L
+ 12-crown-4 → complex	$H_2O$	25			0	0	712	[crown] = 0.118 mol/L
	H ₂ 0	25			Ŧ	+0.2	712	1
	0°H	25					612	l
Li ⁺ + crvntand[2.2.2] -> comnlex	MaOH	36						
		50			1	2.1-2	113	
	MeOH	c2			+10.6	.6	713	
Na + cryptand $[2.2.2] \rightarrow \text{complex}$	$H_2O$	25			+14.2	1.2	713	
K ⁺ + cryptand[2.2.2] → complex	MeOH	25			115.0	0	612	
		3 2					110	
	120	07			+17.4	.4	713	
$r_{0} + cryptana(2.2.2) \rightarrow complex$	MeOH	25			+13.1	17	713	
$Rb^+ + cryptand[2.2.2] \rightarrow complex$	H _o O	95			1149	¢	612	
- 1	MeOU	3 5			- -	4	110	
	IMEOIN	07			+7.4	.4	713	
Ca* ⁺ + cryptand[2.2.2] → complex	MeOH	25			+10.0	00	713	
Ca ²⁺ + crvntand[2.2.2] → comnlex	H.O	95			1.001	-		
. 1	MaOU	3 5				1.	110	
	INIEUT	07			+14.6	.9	713	
$5r^{-1} + cryptand[2.2.2] \rightarrow complex$	$H_2O$	25			+26.6	9.6	713	
$Ba^{2+}$ + cryptand[2.2.2] $\rightarrow$ complex	MeOH	25			101	2	719	
		2 L				-		
	1120	07			+28.6	9.0	7.13	
Li' + cryptand[2.2.2] $\rightarrow$ complex	$H_2O$	25			+2		714	withdrawn in 713
	MeOH	95						
Na ⁺ + ammtand[0 0 0] -> ammlan		3 5			r F		c1/	
T utypuanulz.z.z] comprex	H ₂ O	25			+15		714	
	MeOH	25			+11		715	
K ⁺ + crvptand[2.2.2] → complex	H,O	01						
with money area and and and and and and and and and an		67			81+	_	/14	
	MeOH	25			+16		715	

Rb ⁺ + cryptand[2.2.2] → complex Cs ⁺ + cryptand[2.2.2] → complex	H ₂ 0 Me0H H ₂ 0	25 25 25				+15 +15 +2	714 715 714	withdrawn in 713
• • •	MeOH H ₂ O H ₂ O H ₂ O	25 25 25 25				+7 +17 +26 +24	715 715 715 715	
1 1 1	H20 H20 0	25 25 25				+19 +20 -23	715 715	017 ni narawn ni
_   '	H20 MeOH M20H	25 25 95				+28 +4 +13	715 715 715	
Na + cryptan(2.2) - complex K ⁺ + cryptan(2.2.1] - complex Rh ⁺ + cryptan(2.2.1] - complex	MeOH	25 25				6 + + 2 +	715	
+ cryptand[2.2.1]	MeOH MeOH	25 25				+1 +7	715 715	
	MeOH MeOH	25 25				6+ 9+	715 715	
Rb ⁺ + cryptand[2.1.1] → complex Fra ²⁺ + 3nhen → Fra(nhen). ²⁺	MeOH H ₂ O	25 25				+3 +4.7	715 716	
$\begin{array}{ccc} C^{22} & + & 3phen & + & C(phen)^{24} \\ C^{22} + & 3phen & + & C(c)phen)^{24} \\ Ni2^{24} + & 3phen & - & Ni(c)hen)^{24} \end{array}$	H20 H_0	25 25				+19.5 +20.4	716	
$\begin{array}{cccc} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & $		25				+19.4	716	
$2n^{-1} + 3pnen \rightarrow 2n(pnen)_3^{-1}$ CoCl ₂ (py) ₂ $\rightarrow$ CoCl ₂ (py) ₄	pyridine	25 59	en (	7	-41	0.021	205	
CoBr ₂ (py) ₂ → CoBr ₂ (py)₄ CoL _a (ny) ₂ → CoL _a (ny).	pyridine pvridine	20	നന	7	9 73		205 206	
$\begin{array}{l} \operatorname{Coll}_{2}(Y,Y) & \operatorname{Coll}_{2}(Y,Y) \\ \operatorname{Coll}_{2}(3-\operatorname{Me-py})_{2} & \operatorname{Coll}_{2}(3-\operatorname{Me-py})_{4} \\ \operatorname{Coll}_{2}(Y,M_{2}-\operatorname{nv})_{-} & \operatorname{Coll}_{2}(3-\operatorname{Me-nv})_{-} \end{array}$	3-methylpyridine	17 185	- 33 - 73	4	-18 19		207	
$M_{\text{H}} = M_{\text{H}}^{2} = M_{H}^{2} = M_{H}^{2$	H ₂ 0	$-3$ to $\sim 87$	1.4	6	-10.0		217	
$ \begin{array}{cccc} M_{M} & M_{M} & M_{M} & M_{M} \\ N_{M} & M_{M} & M_{M} & M_{M} & M_{M} \\ N_{M} & M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} \\ M_{M} & M_{M} \\ M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} \\ M_{M} & M_{M} & M_{M} \\ \\ M_{M} & M_{M} \\ \\ M_{M} & M_{M} & M_{M} \\ \\ M_{M} & M_{M} & M_{M} \\ \\ M_{M} & M_{M} \\ \\ M_{M} & M_{M} & M_{M} \\ \\ M_{M} & M_{M} \\ \\ M_{M} & M_{M} & M_{M} \\ \\ M_{M} & M \\ \\ M_{M} & M \\ \\$	DMF	-42, -17 95			-9.8 9.9		249 940	
$na(1.MF)^{e_{1}} \rightarrow na(1.MF)^{t_{2}}$	trimetnyi phosphate	07			0.62-		643	
Eutrodia + 🗡 — complex	CHCI ₃	22	1.5	9	+8		717	
Ni(MeNHCH ₂ CH ₂ NHMe) ₂ (ONO) ₂ $\rightarrow$ NE(MENHCH CH NHME) ₂ (ONO) $\rightarrow$	<b>CHCI</b> ³	25	1.7	9	-4.5		269	
NI(MENHCH2CH2UH2H2(NO22) NI(EtNHCH2CH2UH2N) $\rightarrow$	CHCl ₃	25	1.4	5	-7.2		269	
NIGUNTOR2CH2CH2CH2CH2UND22 SCN ⁻ + a-cyclodextrin -> complex	H ₂ 0 H ₂ 0 H ₂ 0 H ₂ 0	15 25 35	1.2	5	-3.1	-3.5 -4.2 -5.1	718 718 718 718	
ClO₄ ⁻ + α-cyclodextrin → complex	H20 H20 H20	15 25 25	1.5	5	-1.4	-1.6 -1.9	718 718 718	
$I^- + \alpha$ -cyclodextrin $\rightarrow$ complex	H ₂ 0 H ₂ 0 H ₂ 0	35 15 25	1.5	9	-7.0	-2.0 -7.4 -5.8	718 718 718 718	

697 698

699 700 701 702 703 704 705 706 706 706 710 706 710 710 710 7112

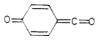
5 13

				P/	no.	$\Delta V^{a}/\cos^{3}$	$\Delta V^{o}/\cos^{3}$		
.ou	reaction	solvent	$T/^{\circ}C$	kbar	of $K$	$mol^{-1}$ )	$mol^{-1}$ )	ref	remarks
713		$H_2O$	35				$^{-5.2}$	718	
714	$SCN^- + \beta$ -cyclodextrin $\rightarrow$ complex	$H_{2}O$	25				0	718	
715	•	$H_{2}O$	25	1.2	5	+1.5		718	
716	Cł0₄ - + β-cyclodextrin → complex	$H_{2}$	25				+6.5	718	
717		$H_{2}O$	25	1.2	2	+8.0		718	
718	$I^{-} + \beta$ -cyclodextrin $\rightarrow$ complex	$H_{2}^{-}O$	25				0	718	
719		$H_2O$	25	1.2	5	+1.1		718	
^a From under pri ionization	^{<i>a</i>} From equilibrium constants. ^{<i>b</i>} From partial molar volumes or by dilatometry. ^{<i>c</i>} Polycarbonate (Aldrich) film. ^{<i>d</i>} Adsorption on ZnO single crystal is also studied under pressure (ref 627). ^{<i>e</i>} Poly(methyl methacrylate) (Aldrich) film. ^{<i>l</i>} EDA complex. ^{<i>s</i>} Calculated by T.A. by means of ln $K_n/K_1 = aP + b \ln(1 + cP)$ . ^{<i>h</i>} Fro water ionization, the following equation is proposed: ²¹⁹ $\Delta V^o = -25.044 + 3.3858 \times 10^{-1}T - 1.1763 \times 10^{-2}T^2 + 1.6880 \times 10^{-4}T^3 (T/^oC)$ . ^{<i>i</i>} Calculated by T.A. by means of ln	r dilatomet . ⁷ EDA cc 3.3858 × 10	try. ^c Poly omplex. ⁶ $^{-1}T - 1.1$	ycarbonat Calculat 763 × 10	te (Aldrided by T. ${}^{2}T^{2} + 1.$	ch) film. ' A. by mea 6880 × 10	⁴ Adsorptic ns of ln $K$ ⁴ $T^3$ ( $T/^{\circ}$ (	in on ZnO sing $p/K_1 = aP + b$ (2). Calculated	le crystal is also studied $\ln(1 + cP)$ . ^h For water I by T.A. by means of ln

 $= a + bP + cP^2$ . *i*Calculated by  $\Delta V^\circ = V^\circ[M(\text{Hedta})^-] - V^\circ[M^{2+1}] - V^\circ[\text{Hedta}^{3-1}]$ . The original authors recommend  $\Delta V^\circ = V^\circ[M(\text{Hedta})^-] - V[H_2O] - V^\circ[M^{2-1}]$ .

V°[Hedta³⁻]

×

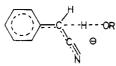

zation in the former. In the bridge-flipping process of the 7-norbornadienyl cation, just the opposite feature is present: the charge must then become localized in the transition state, and indeed, expansion then fails to occur. 532 

## I. Acyl-Transfer Processes (Entries 804–944)

The first two cases are important as they exemplify the formation of the tetrahedral intermediate so characteristic of this class. In both,  $\Delta V^*$  is negative⁵³³ as expected for an addition, the second rather more so than the first because of the intramolecular nature of the first reaction. In all other examples, the activation volume is for the more complex process that includes the breakdown of this intermediate.

Unfortunately, the papers reporting catalyzed hydrolysis reactions together present a complex pattern that does not allow general conclusions to be drawn, but rather gives the impression that each result is specific to the case at hand. The use of polymer catalysts, micelles, and highly aqueous mixed solvents are complicating factors leading us to advise the study of each paper as a separate entity and to regard the field as a whole as one in a state of development. Only a few results can be singled out here.

The hydrolysis of phosphate ester in entry 854 is of interest in that it addresses the question of water assistance in that case or, in other words, whether metaphosphate ion is capable of existence as a free species in water. The negative activation volume strongly argues⁵⁴⁵ that it cannot, although this species can be detected in nonaqueous medium⁷³⁹ and in the gas phase.⁷⁴⁰ Doubt was expressed by Jencks⁸⁰² about the validity of using the activation volume as a criterion in this case; however, Cullis⁸⁰³ has more recently reported the activation volume of a thia analogue of metaphosphate in which all the alternative evidence indicates that that species, in contrast to metaphosphate itself, is capable of independent existence as a free species in water. The large and positive volume change found (+11 cm³ mol⁻¹) conclusively shows that Jencks' doubt is unjustified. The remarkable difference between the apparently similar p-nitrophenyl esters of entries 884-886 can be ascribed⁵⁴⁹ to the fit of the acyl entities in the cyclodextrin additives employed as enzyme-like catalysts. The ferrocene moiety is a nearly ideal guest for the  $\beta$ -cyclodextrin host, while the fit of the *p*-tert-butylanisole group is so poor that the complex is essentially incapable of existence at high pressure. Taniguchi⁵⁵¹ has in related studies suggested the formal existence of two types of complexes with cyclodextrins, named tight and loose. A special mechanism for the hydrolysis of p-hydroxyphenyl esters has been proposed by Isaacs^{543,553} to account for the unusual pressure-induced retardation: elimination occurs in the anion to produce a ketene intermediate, which is then rapidly hydrated.




It is interesting that malonate and methyl malonate esters show the same effect while dimethyl malonate esters do not: the latter cannot form the required precursor anion. Finally, the elimination reactions of Asano⁵⁵⁵ and of Sen and Palit⁵⁵⁶ are of interest in that they apply in cases where the concentration of negative charge might be expected to lead to activation volumes more negative than normal. But it is not obvious from the results that this is the case; if the effect exists, it cannot be very large.

## J. Miscellaneous Reactions (Entries 945–1137)

The monosaccharide epimerizations (mutarotations) reported at high pressures were of the catalytic type (by enzyme and by Cu(II)); for the interpretations, the original papers by Andersen⁵⁵⁹ and O'Connor⁵⁶⁰ should be consulted. The glycoside hydrolyses listed appear to fall in two categories, with those of the pyranosides retarded by pressure and those of the furanosides showing mostly small negative activation volumes; thus, these results suggest  $A_1$  and  $A_2$  mechanism, respectively (see our earlier review for a fuller discussion of this distinction).

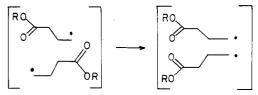
Nucleophilic aromatic substitution falls clearly in two categories depending on whether the nucleophile is neutral or anionic. The charge separation that develops in the former case clearly leads to much larger negative volumes of activation. The deviation of values from a possible limiting value of  $-10 \text{ cm}^3 \text{ mol}^{-1}$  seen in Brower's extensive investigation⁵⁵⁴ of dedeuteriation was explained in terms of relatively late transition states for these reactions. The very large value observed by Inoue⁵⁶⁴ in methanol points to a highly delocalized transition state in that case.



Hamann's proton exchange in formate anion at 200 °C is mildly accelerated by pressure, in accord with a four-membered transition state:⁵⁶⁶



Indeed, it is hard to visualize any other pathway. The acetate case may involve the dianion; the value of  $\Delta V_0^*$ is close to Brower's limiting value. Tamura has used the pressure effect on the ketonization rate of pentanedione enol in the presence of reversed micelles to make an estimate of the polarity of the microenvironment.⁵⁶⁷ The pressure effect on the Wittig reaction primarily reflects the bond being formed between the reagents:⁵⁶⁸ the reaction of hydroxide ion to give initially the phosphorus ylide is strongly retarded, and charge neutralization is expected to be largely responsible.⁵⁴⁴ Both charge formation and bonding must surely be involved in the reduction of quinones by secondary amines and triphenylmethanes; the accelerations by pressure are very large. The same can be said about the halogenation reactions listed.


The proton exchanges of entries 1053-1079 are of interest when the question of tunneling arises. Ordinarily, the molar volumes of species differing only isotopically are virtually identical, and this is true of transition states as well. The substantial difference seen in the activation volumes of proton and deuteron transfer from  $\alpha$ ,*p*-dinitrotoluene to tetramethylguanidine in toluene at 25 °C is clear evidence for a tunneling contribution; so is the pressure dependence of this difference.⁵⁷⁷

The organic photochemical processes noted in Table VII include several small negative activation volumes attributable to complex formation, and positive values that can be ascribed to viscosity effects. The last value in Table VII is the activation volume⁵⁹⁵ for the ionophore-assisted transport of gadolinium ion through vesicle walls, as indicated by simultaneously observable ESR signals of inside and outside TEMPONE; the enormous positive value is explained as an indication that dehydration of the cation is a vital part of the activation process. The observation strongly favors Eigen's point of view⁷⁴¹ over Chock's⁷⁴² in their controversy on this issue.

### 4. Activation Volume Differences (Table VIII)

It is perhaps unfortunate that relatively few data of this sort are available, because product ratios can usually be measured to greater precision than individual concentrations, and errors in timing, sampling, and so on are unimportant. While this sort of information only gives comparative values, one usually wants to make comparisons in any case. The data listed have proved to be especially helpful in studies of free radicals, in which complex mixtures are the rule rather than the exception.

The dissociation of caged radicals requires more space than their combination or recombination;⁴²⁴ this datum is one example of the space needed for diffusion. The result of Zhulin⁴²² (entry 2) is unexpected, as noted by him; it may mean that the initial fission reaction(s) may not leave the pair in the best orientation for recombination, so that diffusional motion is required not only for separation but also for bond formation ("cage rearrangement"):



Several entries show that radical fission is much more space consuming than hydrogen abstraction or than attack on olefinic double bonds. Entry 6 reveals the often-observed small space advantage of a more crowded transition state, and entry 7 shows that tunneling must characterize the act of hydrogen atom abstraction. In several other entries, the products and reactants are related by more than one simple step, and the results are then not easily interpreted.

Inspection of entries 14 and 15 leads one to recall Eckert's proposal⁷⁴³ that the minima sometimes observed in the volume profiles of Diels–Alder reactions of one diene to another are evidence of secondary orbital interactions.⁷⁴⁴ It has been noted that volume differences between the exo and endo transition states are often negligible, however, which tends to weaken this proposal. In Jurczak's cases,⁶⁰² in fact, these pressure effects are in the opposite direction: exo is favored at high pressure. Eckert's proposal may still well be right in those cases in which a volume minimum

and endo stereochemistry are established, but a oneto-one relationship between secondary orbital interactions and smaller endo transition states cannot be considered proved at present.

The remaining data in Table VIII show mostly small and somewhat random effects in the ratio of stereo- and regioisomers in several reactions. In this connection, it is worth noting that synthetic chemists often wonder whether high pressure will alter ratios of products in favor of the more symmetrical structures. All experience is that such an expectation is not generally justified. One can certainly defend the use of pressure as one additional variable to try in attempts to optimize yields, but while there are several factors that have known beneficial effects at high pressure as noted repeatedly above, mere symmetry is not among them.

## 5. Reaction Volumes in Tabular Form

Reaction volumes for chemical processes are listed in Table IX.

## A. Conformational Equilibria (Entries 1-66)

In the large majority of cases, the more crowded gauche conformers are favored over the anti conformers by the application of high pressures; the volume differences are usually a few  $cm^3 mol^{-1}$ . The interfering groups seem slightly compressed, as it were, unable to distance themselves from one another.

## B. Complex Formation (Entries 67–150)

Hydrogen bonds serve to bring nuclei more closely together; on the average, each such bond reduces the volume by about  $4 \text{ cm}^3 \text{ mol}^{-1}$ . The strong directionality of the HO...H bond tempers this decrease and may even reverse it; thus, the open structure and low density of ice are brought about by linear hydrogen bonds.

Charge-transfer complexes generally reduce volume, probably in part by the formation of dipolar products, especially in the case of the iodine complexes. It seems at first sight surprising that the association of iodide ion with various cations would be enhanced by pressure. as claimed by Jee^{646,648} and Williams.^{649,650} Further work will be desirable; one question that needs to be considered is whether the initial ions depicted as free really are that way, or paired (note the high ionic strength in entries 137-139, for example). The huge decrease in volume upon dissociation of ribosomes and of the cytochrome complex of entry 144 underscores the fact that one must not uncritically extrapolate generalizations derived from small-molecule behavior to macromolecules. It seems probable that in the fission of these species, polar interior surfaces become exposed to water and that the hydration of these surfaces is responsible. In other words, these cleavage processes resemble ionization.

## C. Ionic Processes (Entries 151-257)

It is well-known that ionization is enhanced by pressure and that the volume changes can be understood in terms of the Drude-Nernst equation,⁷⁴⁵ which predicts that electrostriction will be most pronounced when the ion is small, the charge large and localized, and the solvent nonpolar. These effects dominate this part of Table IX. Thus, the ionization volume of  $H_2S$ in water is less than that of water itself, the ionization volume changes for phosphoric acids become larger with every step, and the values in methanol are much larger than in water. The values of boric acid and carbonic acid are larger than average, since in addition to charge formation, bonding occurs in the process. For carboxylic acids other than formic,  $\Delta V_i$  is relatively constant, as was already known.¹ The volume effects of proton transfer from nitrogen to oxygen likewise have been discussed at length before, as have simple ion-pair equilibria.

The positive values describing the volume changes upon complexing aqueous cations with crown ethers indicate the need for dehydration, as noted above; the effect of doubling the charge is to increase the expansion. However, the simple act of increasing the coordination number is normally expected to lead to overall contraction. The possibility that this effect can be offset by simultaneous increases in length in the distances in the bonds from the metal ion to the ligands already there⁷⁴⁶ may have been realized with entry 699; it is one example among many observed qualitatively of pressure-induced reversals in the shifts of NMR signals brought about by shift reagents.⁷¹⁷

## 6. Related Topics and Concluding Remarks

A few papers that escaped our early notice or did not appear until after the completion of the tables nevertheless need to be mentioned; they report pressure effects of Hammett  $\rho$  and Brønsted  $\beta$  values,⁷⁴⁷ on cyclohexanol relaxation,⁷⁴⁸ on chemically induced ethylene polymerization,⁷⁴⁹ on the polymerization of acrylonitrile, both redox⁷⁵⁰ and free radical,⁷⁵¹ on hindered Diels– Alder reactions,⁷⁵² on Diels–Alder reactions with inverse electron demand,⁷⁵³ on the protonation of a 1,3,5-trisaminobenzene,⁷⁵⁶ and on the association of pyridinium iodides in aqueous ethanol.⁷⁵⁷

In addition, we wish to call attention to related papers on new techniques in studying conductance in the 100-kbar range,⁷⁵⁸ on EXAFS measurements at high pressure,⁷⁵⁹ on Raman spectroscopy at high pressure,⁷⁶⁰ on the relation between  $\Delta V$  and  $\Delta S$ ,^{784,785} on data handling with activation parameters,⁷⁶¹ on a discussion of activation parameters,⁷⁶² on isochoric vs isobaric behavior,⁷⁶³ on additivity of partial volumes,⁷⁶⁴⁻⁷⁶⁷ on electron mobility,⁷⁶⁸ on high-pressure FTIR studies, of catalytic surfaces,⁷⁶⁹ on micellar microfluidity,⁷⁷⁰ on densities of aqueous solutions of nonelectrolytes,⁷⁷¹ on volume profiles of polymerization,^{772,773} on synthe-sis,^{774–776} on rotational reorientation,⁷⁷⁷ on photochem-istry of gas-liquid systems,⁷⁷⁸ on the kinetics of phase separation,⁷⁷⁹ on enzyme behavior in compressed solutions,⁷⁸⁰ on CO exchange of carbonyl complexes,⁷⁸¹ on syngas conversion,⁷⁸² on  $\Delta V^*$  as a tool for understanding the mechanism of action of additives in electrodeposition,⁷⁸³ on pressure-induced reduction of ferric salts,^{784,785} and on the application of Gibson's concept of an excess pressure to an analysis of the properties of solutions containing both salts and neutral solutes in terms of partial and apparent molar volumes⁷⁸⁶ and high-pressure flames.787

IADLE A. Supprementary values of Activation volumes no.	solvent	T/°C	$P/{ m kbar}$	no. $f_k$	$\Delta V^*/$ (cm ³ mol ⁻¹ )	ref	remarks
C ₃ H _k O ₃ CCH ₃ .	CH CI	06	19	Ľ	66-	788	AV [*] increases with
z=<	Un2U12	07	71	-	77_	001	Dressure
c ₂ H ₆ 0 \ 0         co ₂ c ₂ H ₅ N/2           9         c ₂ c ₂ H ₅ co ₂ c ₂ H ₅	MeCN	20	12	12	-99	788	$\Delta V = -30 (30^{\circ} \text{C})$ $\Delta V^*$ increases with
		ì	1		1		pressure $\Lambda V = -96 (30 °C)$
		96	L 0	ų	06-	700	
× 4	сп ₂ с12 acetone	52 72	0.5	0 <del>4</del>	-73 - - -	789	
$5 \qquad (I \qquad ) + TCNE \rightarrow (-M) + (CN)_4$	MeCN	25	0.7	33	-31	789	
$M = Fe(CO)_3$							
6 O2NC6H4O CH2Ph	НЧА	80	80	14	-19.4	790	$x_{A} = x_{B} = 0.171$
7 $0_2 N - (\bigcirc) - 0 C N + P h C H_2 N_3 - N_1 / N_1$	CH,Cl,	80	14	ç	-18.4	790	$\Delta V = -33.0$ at $F > 3$ koar $x_{\rm A} = x_{\rm R} = 0.0278$
× 80 ×	MeČN	80			-14.5	790	$x_{\rm A} = 0.0394, x_{\rm B} = 0.1580$
	MeCN	88			-18.2 -23.4	790 790	$x_{\rm A} = x_{\rm B} = 0.0724$ $x_{\rm A} = 0.094$ , $x_{\rm B} = 0.0392$
11 Me ₃ SiOOCMe ₂ Ph → Me ₂ (MeO)SiOCMe ₂ Ph	cy-C ₆ H ₁₀	160	10	9	-21.8	791	
12	$^{cy-C_{6}H_{10}}$	170	10 10	ο0 i	-20.3	191	
14	cy-C ₆ H ₁₀ PhMe	120	c./. 10	0 L	-18.0	16/.	
15 $Me_3SiOOCPh_3 \rightarrow Me_2(MeO)SiOCPh_3$	cy-C ₆ H ₁₀	160	10	. 9	-14.9	161	
	H ₂ 0	30	1.6	9	-8.7	792	
18	H ₂ U ag R+OH	0 <del>4</del> 0	1.0 1	<u>ہ</u> م	-9.4 -14 0	267	EtOH 10 mol %
19	ad EtOH	40	1.6	0 0	-15.9	792	
20	aq EtOH	30	1.6	9		792	20 mol
21	aq EtOH	40 0 6	1.6 1 £	in a	-19.7	267	EtUH 20 mol %
22	ad EtOH	40 05	1.6	9	-22.8	792	30 mol
24	aq EtOH	30	1.6	9	-16.3	792	40 mol
	aq EtOH	40	1.6	9	-17.2	792	EtOH 40 mol %
$26  FnUn_2UI + U_5n_5N \rightarrow FnUn_2N  U_5n_5 + UI$	MeOH	50 50	10	0 0	-9.4 -12.1	793	
	MeOH	40	2	9	-7.3	793	
$29  0^2 M \longrightarrow 0^2 M^2 Cl + 0^6 H_5 M \longrightarrow 0^2 M \longrightarrow 0^2 M^2 Cl^2 M + C$	MeOH	50	2	9	-12.0	793	
$30 \qquad Me \qquad O \qquad CH_{a}CI + C_{a}H_{a}N \rightarrow Me \qquad O \qquad CH_{a}N^{*}C_{a}H_{a} + CI$	MeOH	40	010	9	-10.7	793	
	DMSO	0¢	N 00	o vo	-13.5 -10.0	794	[t-BuOK] = 0.9 mol/L
							$\Delta V^* = -10.2 \text{ for}$
33 MeCOCH(OH)Me + $2V(V) \rightarrow MeCOCOMe + 2V(IV) + 2H^+$	$H_2O$	25	2	5	+3.5	795	une reverse reaction
$MeCOCH_2OH + 2V(V)$	$H_2O$	35	2	5	+1.3	795	
35 Joke Loke Loke Loke Loke Loke Loke Loke L	CH2Cl2	20	14	80	-2-	796	$\Delta V^*(\beta) - \Delta V^*(\alpha) = -8.5$
ove t t t t t t t t t t t t t t t t t t t							
CH3_CN Acô la Acô la B a							
Tr = Ph ₃ C							

no.	reaction	solvent	$T/^{\circ}C$	P/kbar	no. of K	$\Delta V^a$	$\Delta V^b$	ref	remarks
-	$C_6H_6NH^+ \rightarrow C_5H_6N + H^+$	$H_2O$	25				+4.4	797	
5		$0_2^{2}H$	25				+3.1	797	
e		$H_2O$	25				+3.4	797	
4		$H_2O$	25				+3.6	797	
2		$H_2O$	25				+1.7	797	
9	$H_2N - O_NH^+ - H^+ + H_2N - O_N$	$H_2O$	25				+0.9	797	
5	2 + + r 1 + I	$H_2O$	25				+0.4	797	
8 6 01 1 11	H ₃ N ⁺ CH ₂ COOH → H ⁺ + H ₃ N ⁺ CH ₂ COO ⁻	H ₂ 0 H ₂ 0 H ₂ 0	15 25 30	2.5 2.5 2.5	စစစစ	-8.0° -8.1° -7.6° -7.8°		798 798 798 798	
0.004.00	H ₃ N+CH ₂ COO ⁻ → H ⁺ + H ₂ NCH ₂ COO ⁻	H20 H2000:::2000	35 25 30 25 25 25 25	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		-7.4° +7.4° +2.1 ^d +2.6 ^d		798 798 798 798	
~ ∞ 6 9 -	MeCH(NH ₃ ⁺ )COOH → H ⁺ + MeCH(NH ₃ ⁺ )COO ⁻	Н ² 0000	30 22 50 <u>22</u>	5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	••••••	+2.0° -10.4° -9.9° -10.2° -10.2°		798 798 798 798	
2 2 2 2 2 2 2	MeCH(NH ₃ ⁺ )COO ⁻ → H ⁺ + MeCH(NH ₂ )COO ⁻	Н ² 0000 Н 120000 Н 120000	35 35 35 35 35 35 35 35 35 35 35 35 35 3	ວັດ ດີດ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ	<b>ઌઌઌઌઌ</b> ઌ	-9.7° +8.0° +4.3° +3.8° +3.0°		798 867 867 867 867	
22 33 33 33 33 33 33 33 33 33 33 33 33 3	CH2CH(NH3 ⁺ ):COOH CH2CH(NH3 ⁺ ):COO ⁻	Н ² 0 Н ² 0 Н ² 0	15 20 35 35 35 35	52 52 52 52 55 55 52 55 55 52 55 55 52 55 55 55 55 55 55 55 55 55 55 55 55 55	တ္တတ္တတ္	-7.6° -8.7° -9.0° -8.1°		798 798 798 798 798	
33 35 36 37	CH2CH(NH ₂ )COO ⁻ H ⁺ + O NH CH2CH(NH ₂ )COO ⁻ CH ₂ CH(NH ₂ )COO ⁻	H20 H20 H20 H20 H20	15 20 35 35 35	2.5 2.5 2.5 2.5	00000	-5.1° -5.1° -5.1° -5.3°		798 798 798 798 798	

33 39 39 41 43 43 43	Me _s CHCH ₂ CH(NH ₃ ⁺ )COOH → H ⁺ + Me _s CHCH ₂ CH(NH ₃ ⁺ )COO ⁻	Н ² 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 3 2 5 2 <del>1</del>	255 255 255 255 255 255 255 255 255 255	<b>00000</b> 0000000000000000000000000000000	-9.8° -7.0° -7.0° -7.7°		799 799 799 799	
45 45 46 49 49	Me ₂ CHCH ₂ CH(NH ₃ +)COO ⁻ → H ⁺ + Me ₂ CHCH ₂ CH(NH ₂ )COO ⁻	Н ² 0 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,	40 33 30 52 0 15 40 33 50 52 15	ນ ນ ນ ນ ນ ນ ນ ນ ນ ນ ນ	<b></b>	$+2.3^{d}$ +1.2 ^d +1.0 ^d +0.7 ^d -0.2 ^d		662 662 662	
50	сг ₃ * (NH ₃ )4Co(hfac) ²⁺ + ОН ⁻ (NH ₃ )4Co(O ^{-CF₃} OH	- H20	25				+11.2	800	f
51	$(en)_{2}Co(hfac)^{2^{+}} + OH^{-} \longrightarrow (en)_{2}Co_{0} + OH^{-} \longrightarrow (E_{3})_{2}Co_{1} + OH^{-}$	$H_2O$	25				+10.7	800	
52	$a^{-}$ (trien)Co(hfac) ²⁺ + OH ⁻ $\rightarrow a^{-}$ (trien)Co( $O^{-}$ OH CF _a	H ₂ O	25				+8.9	800	
53	$\beta^{-(trien)Co(htac)^{2^{+}} + OH^{-} \rightarrow \beta^{-(trien)Co(O_{O_{O_{O_{O_{O_{O_{O_{O_{O_{O_{O_{O_{O$	H ₂ O	25				+11.1	800	
54	α-(edda)Co(hfac) + OH ⁻ → α-(edda)Co ^{OLO} OH	H ₂ O	25				-8.3	800	
55	$B^{-}(edda)Co(hfac) + OH^{-} \rightarrow B^{-}(edda)Co(hfac) + OH^{-} $	H ₂ O	25				-3.9	800	
56	56 $f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co^{O} \longrightarrow OH^{-} OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co^{O} \longrightarrow OH^{-} OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(htac)^{+} + OH^{-} \longrightarrow f(N) - (\cdot - dtma) Co(ht$	H ₂ 0	25	-	2 5		+1.6	600 600 600	م م

^a From equilibrium constants. ^b From partial molar volumes or by dilatometry. ^c Calculated by T.A. by means of  $\ln K_P/K_{0.001} = aP + b \ln (1 + cP)$ . ^d Calculated by T.A. by means of  $\ln K = a + bP$ . ^e Calculated by T.A. by means of  $\ln K = a + bP$ . ^e Calculated by T.A. by means of  $\ln K = a + bP$ . ^e Calculated by T.A. by means of  $\ln K = a + bP$ . ^e Calculated by T.A. by means of  $\ln K = a + bP$ . ^e Calculated by T.A. by means of  $\ln K = a + bP$ .

TABLE XI	TABLE XII. Supplementary Values of Activation Volume Differences	erences							
no.	reaction	solvent	$T/^{\circ}C$	$P/{ m kbar}$	no. of <i>k</i>	$\delta \Delta V^{4}/(\mathrm{cm}^{3} \mathrm{mol}^{-1})$	ref	remarks	1
	$\begin{array}{c} CH_2OAc \\ \hline \\ 0 \\ AcO \\ AcO \\ Br \\ AcO \\ AcO \\ OAc \\ $	MeCN	20	12	m	0 +2.8 ^a	801	q	1
7	$\begin{array}{c} CH_2OAc \\ \hline H_2OAc \\ \hline H_2OAc \\ AcO \\ AcO \\ OAc \\ OAc$	MeCN	20	12	73	0 +5.6	801	9	
က	CH ₂ OAC CH ₂ OAC AcO Ac CH ₂ OAC AcO Ac AcO OMe Cis-disaccharide AcO Ac OH	MeCN	20	12	<i>ლ</i>	0 +3.7	801	р	
4	Aco Ac CH20AC CH20AC Aco Ac CH20AC CH20AC CH20AC Aco Ac CH20AC CH20AC CH20AC Ac Ch20AC AC A	MeCN	20	œ	5	0 +4.6	801	q	
^a Calculate	^a Calculated by T.A. by means of $\ln k = a + bP$ . ^b Helferich glycosylation. 0.2 mmol of Hg(CN) ₂ in 3.8 mL of MeCN.	lation. 0.2 m	mol of Hg(C	N)2 in 3.8 n	nL of MeC	Z.			1

The continuing rapid increase in the number of laboratories equipped to study chemical properties and processes at high pressure and in the number of publications describing effects of high pressure will, in our opinion, soon make it impossible to write or to read complete listings of these results. In a sense, solution high-pressure chemistry is now so common that it can no longer be considered a special area. We are rapidly approaching the time that essentially every chemist, in every experiment, decides the pressure to be used much as he chooses the temperature. The miniaturization of the amounts of chemicals handled and the proliferation of physical techniques amenable to high-pressure extension have contributed to this desirable state of affairs. Of course, there will always be a range of pressures that is not readily accessible to everyone (currently at 100 kbar to 10 Mbar), and that will help preserve the character of High-Pressure Chemistry as a specialty area, just as there will also always be a High-Temperature Chemistry. But beyond 20 kbar or so, there are few media that are still liquid, and at ultrahigh pressure there is as little opportunity for solution chemists as there is as ultralow temperatures. Further research using high pressure is likely to move into more specialized areas, and accordingly, future reviews of high pressure are likely to be much more narrow in scope.

## 7. Appendix

Tables X, XI, and XII show a limited number of data that came to our attention too late for inclusion in Tables VII-IX.

Acknowledgments. Many investigators in this field responded to our request to check our tables for omissions and help us make them as complete as possible; for this we thank Drs. H.-D. Brauer, K. R. Brower, M. Buback, J. Devaure, B. El'yanow, J. B. F. N. Engberts, D. J. Gardiner, K. Hara, E. U. Franck, K. Heremans, N. S. Isaacs, G. Jenner, Y. Kitamura, F. G. Klärner, H.-D. Lüdemann, G. Luft, A. E. Merbach, J.-P. Morel, T. Nakayama, R. C. Neuman, J. Osugi, S. K. Palit, J. W. Scheeren, G. M. Scheneider, E. Whalley, A. Würflinger, and S.-D. Yoh. R.v.E. gratefully acknowledges financial support from the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Max-Buchner Forschungsstiftung, and the Scientific Affairs Division of NATO under Grant No. RG 85/0681. He sincerely appreciates the fine collaboration with the members of his group, and especially thanks Sabine Franken and Dieter Projahn for their assistance with the preparation of the manuscript. T.A. thanks Mombusho (Japan Ministry of Education, Science, and Culture) for supporting his own work in this field. W.leN. thanks the National Science Foundation for its support and Mombusho for a Special Visiting Professorship at Oita University, where a large fraction of this article was written.

### 8. References and Notes

- Asano, T.; le Noble, W. J. Chem. Rev. 1978, 78, 407. Kelm, H., Ed. High Pressure Chemistry; Reidel: Dordrecht,
- (2)1978
- (3) le Noble, W. J.; Kelm, H. Angew. Chem., Int. Ed. Engl. 1980,

19.841.

- (4) Heremans, K. Prev. Phys. Chem. Jpn. 1980, 50, 259.
- (5) Isaacs, N. Liquid Phase High Pressure Chemistry; Wiley: Chichester, 1981.
- van Eldik, R.; Jonas, J., Eds. High Pressure Chemistry and Biochemistry; Reidel: Dordrecht, 1987. (6)
- Rahm, A.; Jenner, G. Actual. Chim. 1985, 41. Demazeau, G. Actual. Chim. 1985, 46.
- (8)
- (9) Lawrance, G. A.; Stranks, D. R. Acc. Chem. Res. 1979, 12,

- Palmer, D. A.; Kelm, H. Coord. Chem. Rev. 1981, 36, 89.
   van Eldik, R.; Kelm, H. Rev. Phys. Chem. Jpn. 1980, 50, 185.
   Swaddle, T. W. Rev. Phys. Chem. Jpn. 1980, 50, 230.
   Swaddle, T. W. In Mechanistic Aspects of Inorganic Reaction Proceedings of the ACC Science Proceedings. Swaddle, T. W. In Mechanistic Aspects of Inorganic Reac-tions; Rorabacher, D. B., Endicott, J. F., Eds. ACS Symp. Ser. 1982, No, 198, 39.
   Swaddle, T. W. In Inorg. Bioinorg. Mech. 1983, 2, 95.
   Merbach, A. E. Pure Appl. Chem. 1982, 54, 1479.
   Merbach, A. E. Pure Appl. Chem. 1987, 59, 161.
   Blandamer, M. J.; Burgess, J. Pure Appl. Chem. 1983, 55, 55.
   Moore, P. Pure Appl. Chem. 1985, 57, 347.
   Mirbach, M. F.; Mirbach, M. J.; Saus, A. Chem. Rev. 1982, 82 59

- 82.59.
- (20)Batsanov, S. S. Usp. Khim. 1986, 55, 579.
- (21) van Eldik, R. Angew. Chem., Int. Ed. Engl. 1986, 25, 673.
   (22) van Eldik, R. Comments Inorg. Chem. 1986, 5, 135.
- (23) van Eldik, R. In Mechanisms of Inorganic and Organometallic Reactions; Twigg, M., Ed., 1985, Vol. 3, p 399; 1986 Vol. 4, p 433; Vol. 5, in press. (24) van Eldik, R., Ed. Inorganic High Pressure Chemistry: Ki-
- netics and Mechanisms; Elsevier: Amsterdam, 1986. DiBenedetto, J.; Ford, P. C. Coord. Chem. Rev. 1985, 64, 361.
- (25)
- (26) Endicott, J. F.; Ryu, C. K. Comments Inorg. Chem. 1987, 6,
- (97)
- Jonas, J. Acc. Chem. Res. 1984, 17, 74. Hamann, S. D.; le Noble, W. J. J. Chem. Educ. 1984, 61, 658. (28)
- (29)El'yanov, B. S.; Vasylvitskaya, E. M. Rev. Phys. Chem. Jpn. 1980, 50, 169.
- Basilevsky, M. V.; Weinberg, N. N.; Zhulin, V. M. J. Chem. Soc., Faraday Trans. I 1985, 81, 875. (30)
- (31)
- (32)
- Asano, T.; Okada, T. J. Phys. Chem. 1984, 88, 238. Kelm, H.; Palmer, D. A, ref 2, p 281. Hamann, S. D. Rev. Phys. Chem. Jpn. 1980, 50, 147. Kitamura, Y.; van Eldik, R. Ber. Bunsenges. Phys. Chem. (33) (34)
- 1984, 88, 418.
- (35) Kotowski, M.; Palmer, D. A.; Kelm, H. Inorg. Chem. 1979, 18, 2555
- Asano, T. Rev. Phys. Chem. Jpn. 1979, 49, 109. Montgomery, J. R.; Chandler, D.; Berne, B. J. J. Chem. Phys. 1979, 70, 4056. (37)
- Beece, D.; Eisenstein, L.; Frauenfelder, H.; Good, D.; Marden, M. C.; Reinisch, L.; Reynolds, A. H.; Sorensen, L.; Yue, K. T. (38)Biochemistry 1980, 19, 5147.
   (39) Hasha, D. L.; Eguchi, T.; Jonas, J. J. Chem. Phys. 1981, 75,
- 1570
- (40)Frauenfelder, H.; Wolynes, P. G. Science 1985, 229, 337.
- (41) Hasha, D. L.; Eguchi, T.; Jonas, J. J. Am. Chem. Soc. 1982, 104, 2290.
- Troe, J. In ref 2, p 489. (42)
- Maneke, G.; Schroeder, J.; Troe, J.; Voss, F. Ber. Bunsenges. (43)Phys. Chem. 1985, 89, 896. Schroeder, J.; Troe, J. Chem. Phys. Lett. 1985, 116, 453.
- (44)
- (45)
- (46)
- Schloeder, J., 110e, 5. Chem. 1953. Dett. 1363, 110, 435.
   Kotowski, M.; van Eldik, R. Coord. Chem. Rev., in press.
   le Noble, W. J.; Schlott, R. Rev. Sci. Instrum. 1976, 47, 770.
   Weber, W.; van Eldik, R.; Kelm, H.; DiBenedetto, J.; Ducommun, Y.; Offen, H.; Ford, P. C. Inorg. Chem. 1983, 22, 2000 (47)623
- (48) Spitzer, M.; Gärtig, F.; van Eldik, R. Rev. Sci. Instrum.,
- submitted for publication. Palmer, D. A.; Schmidt, R.; van Eldik, R.; Kelm, H. Inorg. (49)(10) Family, D. R., Schmidt, R., Van Eldik, R., Ken Chim. Acta 1978, 29, 261.
   (50) Heremans, K. Rev. Sci. Instrum. 1980, 51, 806.
   (51) Heremans, K. Rev. Sci. Instrum. 1980, 51, 806.
- (51)van Eldik, R.; Palmer, D. A.; Schmidt, R.; Kelm, H. Inorg. Chim. Acta 1981, 50, 131.
- Nichols, P. J.; Ducommun, Y.; Merbach, A. E. Inorg. Chem. 1983, 22, 3993. (52)
- Ducommun, Y.; Nichols, P. J.; Helm, L.; Elding, L. I.; Mer-bach, A. E. J. Phys. 1984, 45(C8), 221. Takisawa, N.; Sasaki, M.; Amita, F.; Osugi, J. Chem. Lett. (53)
- (54)1979, 671
- (55) Sasaki, M.; Amita, F.; Osugi, J. Rev. Sci. Instrum. 1979, 50, 1073(56)Funahashi, S.; Ishihara, K.; Tanaka, M. Inorg. Chem. 1981,
- 20, 51. (57)Ishihara, K.; Funahashi, S.; Tanaka, M. Rev. Sci. Instrum.
- 1982, 53, 1231. Balny, C.; Saldana, J. L.; Dahan, N. Anal. Biochem. 1984, (58)
- 139, 178. Balny, C.; Saldana, J. L.; Dahan, N. Anal. Biochem. 1987, (59)160.309.
- (60) Heremans, K., ref 2, p 311.

- (61) Doss, R.; van Eldik, R.; Kelm, H. Rev. Sci. Instrum. 1982, 53, 1592
- Inoue, T.; Kojima, K.; Shimozawa, R. Chem. Lett. 1981, 259. Vanni, H.; Earl, W. L.; Merbach, A. E. J. Magn. Reson. 1978, (62) (63) 29, 11
- (64) Earl, W. L.; Vanni, H.; Merbach, A. E. J. Magn. Reson. 1978, 30.571
- (65) Voelkel, G.; Lang, E.; Lüdemann, H. D. Ber. Bunsenges. Phys. Chem. 1979, 83, 722.
  (66) Sisley, M. J.; Yano, Y.; Swaddle, T. W. Inorg. Chem. 1982,
- 21, 1141.
- (67) Monnerat, A. R.; Moore, P.; Newman, K. E.; Merbach, A. E. Inorg. Chim. Acta 1981, 47, 139. Pisaniello, D. L.; Helm, L.; Meier, P.; Merbach, A. E. J. Am.
- (68) Chem. Soc. 1983, 105, 4528.
- Ilgen, H.; von Jouanne, J. J. Magn. Reson. 1984, 59, 506. (69)
- (70) Jonas, J., ref 2, p 65.
  (71) le Noble, W. J.; Staub, P. J. Organomet. Chem. 1978, 156, 25.
  (72) Drickamer, H. G. Rev. Phys. Chem. Jpn. 1980, 50, 1.
  (73) Kirk, A. D.; Porter, G. B. J. Phys. Chem. 1980, 84, 2998.
- (74)McCarvey, J. J.; Lawthers, I.; Heremans, K.; Toftlund, H. J. Chem. Soc., Chem. Commun. 1984, 1575.
- (75) DiBenedetto, J.; Arkle, V.; Goodwin, H. A.; Ford, P. C. Inorg.
- Chem. 1985, 24, 455. Fetterolf, M. L.; Offen, H. W. J. Phys. Chem. 1985, 89, 3320. Saluja, P. P. S.; Cameron, C.; Florino, M. A.; Lavergne, A.; McLaurin, G. E.; Whalley, E. Rev. Sci. Instrum. 1986, 57, (77)
- 2791
- (78)Uemoto, M.; Hashitani, T. J. Chem. Soc., Faraday Trans. I 1985, 81, 2333. Palmer, D. A.; Kelm, H. ref 2, p 281. Hamann, S. D. Aust. J. Chem. 1984, 37, 867.
- (79)
- (80)
- (81) Hamann, S. D. J. Chem. Soc., Faraday Trans. I 1984, 80, 2541.
- Twigg, M. V. Inorg. Chim. Acta 1977, 24, L84.
- (83)Lawrance, G. A.; Suvachittanont, S. Inorg. Chim. Acta 1979, 32. L13.
- Phillips, J. C. J. Chem. Phys. 1984, 81, 478 (84)

- (85) Phillips, J. C. J. Phys. Chem. 1985, 89, 3060.
  (86) van Eldik, R., ref 24, p 405.
  (87) Hugi-Cleary, D.; Helm, L.; Merbach, A. E. Helv. Chim. Acta 1985, 68, 545.
- (88) Ammann, C.; Moore, P.; Merbach, A. E. Helv. Chim. Acta 1980, 63, 268. (89) Nagasawa, A.; Kido, H.; Hatton, T. M.; Saito, K. Inorg.
- Chem. 1986, 25, 4330 Turin, E.; Nielson, R. M.; Merbach, A. E. Inorg. Chim. Acta (90)
- 1**987**, *134*, 79 (91) Hugi, A. D.; Helm, L.; Merbach, A. E. Inorg. Chem. 1987, 26,
- .763. (92) Harada, M.; Ikeda, Y.; Tomiyasu, H.; Fukutomi, H. Chem.
- Lett. 1984, 1195 (93) Ducommun, Y.; Helm, L.; Hugi, A.; Zbinden, D.; Merbach, A.
- (30) Ducommun, I.; Heim, L.; Hugi, A.; Zbinden, D.; Merbach, A. E. In *High Pressure in Research and Industry*; Backman, C.-M., Johannisson, T., Tégner, L., Eds.; University of Uppsala: Uppsala, 1982; p 684.
  (94) Hugi, A. D.; Helm, L.; Merbach, A. E. *Helv. Chim. Acta* 1985, 68, 508.
  (95) Ducommun V. Zhini, L. D. Terrer, J. T. Start, J. T. Start, J. Start,
- (95) Ducommun, Y.; Zbinden, D.; Merbach, A. E. Helv. Chim. Acta 1982, 65, 1385
- (96) Xu, F.-C.; Krouse, H. R.; Swaddle, T. W. Inorg. Chem. 1985, 24. 267.
- (97) Ducommun, Y.; Newman, K. E.; Merbach, A. E. Helv. Chim. Acta 1979, 62, 2511. (98) Ducommun, Y.; Newman, K. E.; Merbach, A. E. Inorg. Chem.
- 1980, 19, 3696.
   (99) Meyer, F. K.; Newman, K. E.; Merbach, A. E. J. Am. Chem.
- Soc. 1979, 101, 5588.
- (100) Ishii, M.; Funahashi, S.; Tanaka, M. Chem. Lett. 1987, 871.
   (101) Cossy, C.; Helm, L.; Merbach, A. E. Helv. Chim. Acta 1987,
- 70. 1516.
- (102) Lincoln, S. F.; Hounslow, A. M.; Pisaniello, D. L.; Doddridge, B. G.; Coates, J. H.; Merbach, A. E.; Zbinden, D. Inorg. Chem. 1984, 23, 1090.
- (103) Swaddle, T. W.; Merbach, A. E. Inorg. Chem. 1981, 20, 4212.
  (104) Meyer, F. K.; Monnerat, A. R.; Newman, K. E.; Merbach, A. E. Inorg. Chem. 1982, 21, 774.
  (105) Cossy, C. Ph.D. Thesis, University of Lausanne, 1986.
  (106) Lo, S. T. D.; Sisley, M. J.; Swaddle, T. W. Can. J. Chem.

(107) Nielson, R. M.; Dodgen, H. W.; Hunt, J. P.; Wherland, S. E. *Inorg. Chem.* 1986, 25, 582.
(108) Yano, Y.; Fairhurst, M. T.; Swaddle, T. W. *Inorg. Chem.* 1980, 19, 3267.

(109) Helm, L.; Meier, P.; Merbach, A. E.; Tregloan, P. A. Inorg. Chim. Acta 1983, 73, 1.
(110) Meyer, F. K.; Newman, K. E.; Merbach, A. E. Inorg. Chem. 1979, 18, 2142.

(111) Lincoln, S. F.; Hounslow, A. M.; Dodridge, B. G.; Coates, J. H.; Merbach, A. E.; Zbinden, D. Inorg. Chim. Acta 1985, 100,

1978, 56, 2609.

207.

- (112) Meyer, F. K.; Earl, W. L.; Merbach, A. E. Inorg. Chem. 1979, 18, 888.
- (113) Ducommun, Y.; Earl, W. L.; Merbach, A. E. Inorg. Chem. 1979, 18, 2754.
- (114) Batstone-Cunningham, R. L.; Dodgen, H. W.; Hunt, J. P.
- (114) Bassone-Cumingiani, R. L.; Dougen, H. W.; Hunt, J. P. Inorg. Chem. 1982, 21, 3831.
   (115) Helm, L.; Lincoln, S. F.; Merbach, A. E.; Zbinden, D. Inorg. Chem. 1986, 25, 2550.
   (116) Hugi-Cleary, D.; Helm, L.; Merbach, A. E. J. Am. Chem. Soc.
- (116) Hugi-Oleary, D., Henn, E., McCouch, T. 1987, 109, 4444.
  (117) Vanni, H.; Merbach A. E. Inorg. Chem. 1979, 18, 2758.
  (118) Merbach, A. E.; Vanni, H. Helv. Chim. Acta 1977, 60, 1124.
  (119) Doine, H.; Ishihara, K.; Krouse, H. R.; Swaddle, T. W. Inorg.

- Chem. 1987, 26, 3240. (120) Helm, L.; Elding, L. I.; Merbach, A. E. Helv. Chim. Acta 1984, 67, 1453.

- 1984, 67, 1453.
  (121) Tubino, M.; Merbach, A. E. Inorg. Chim. Acta 1983, 71, 149.
  (122) Batstone-Cunningham, R. L.; Dodgen, H. W.; Hunt, J. P.; Roundhill, D. M. J. Organomet. Chem. 1985, 289, 431.
  (123) Knight, C. T. G.; Merbach, A. E. Inorg. Chem. 1985, 24, 576.
  (124) Kessler, J. E.; Knight, C. T. G.; Merbach, A. E. Inorg. Chim. Acta 1986, 115, 85.
  (125) Court G. Halm, L.; Marbach, A. F. Inorg. Chim. Acta 1987.
- (125) Cossy, C.; Helm, L.; Merbach, A. E. Inorg. Chim. Acta 1987, 139, 147.
- (126) Helm, L.; Elding, L. I.; Merbach, A. E. Inorg. Chem. 1985, 24, 719
- (127) Ishirara, K.; Funahashi, S.; Tanaka, M. Inorg. Chem. 1986, 25, 2898.
- (128) Virtanen, P. O. I.; Puutio, M.; Kuokkanen, T. Finn. Chem.
- (129) Virtaleit, F. O. 1., Futurio, H., Hudakanon, T. F. E., Cont. Lett. 1980, 135.
   (129) Moore, P.; Ducommun, Y.; Nichols, P. J.; Merbach, A. E. Helv. Chim. Acta 1983, 66, 2445.
   (130) van Eldik, R.; Palmer, D. A.; Kelm, H. Inorg. Chem. 1979, 18, 1000
- 1520.
- (131) Leipoldt, J. G.; van Eldik, R.; Kelm, H. Inorg. Chem. 1983, 22, 4146.
- (132) Lawrance, G. A.; van Eldik, R. J. Chem. Soc., Chem. Com-mun. 1987, 1105.
- (133) Ise, N.; Okubo, T.; Yamamura, Y. J. Phys. Chem. 1982, 86, 1694.
- (134) Lawrance, G. A.; Schneider, K.; van Eldik, R. Inorg. Chem. 1984, 23, 3922.
  (135) Hyde, K. E.; Palmer, D. A.; Kelm, H. Inorg. Chim. Acta 1978,
- 29, L278.
- (136) Palmer, D. A.; Kelm, H. J. Inorg. Nucl. Chem. 1978, 40, 1095. (137)Kendall, P. L.; Lawrance, G. A.; Stranks, D. R. Inorg. Chem.
- 1978, 17, 1166. Chung, J. J.; Park, K. S. J. Korean Chem. Soc. 1986, 30, 341. (138)(139) Palmer, D. A.; van Eldik, R.; Dasgupta, T. P.; Kelm, H. Inorg.
- Chim. Acta 1979, 34, 91. (140) Macholdt, H.-T.; van Eldik, R.; Dobson, G. R. Inorg. Chem.
- 1986, 25, 1914
- (141) Doss, R.; van Eldik, R. Inorg. Chem. 1982, 21, 4108.
   (142) Mohr, R.; Mietta, L. A.; Ducommun, Y.; van Eldik, R. Inorg.
- Chem. 1985, 24, 757
- (143)Mohr, R.; van Eldik, R. Inorg. Chem. 1985, 24, 3396
- (144) Yoshitani, K. Bull. Chem. Soc. Jpn. 1985, 58, 1646.
   (145) Funahashi, S.; Yamaguchi, Y.; Tanaka, M. Inorg. Chem. 1984, 23, 2249.
- (146) Funahashi, S.; Ishihara, K.; Tanaka, M. Inorg. Chem. 1983, 22, 2070.
- (147) Doss, R.; van Eldik, R.; Kelm, H. Ber. Bunsenges. Phys. Chem. 1982, 86, 925
- (148) Martinez, P.; van Eldik, R. Ber. Bunsenges. Phys. Chem. 1985, 89, 728.
- (149) Martinez, P.; Mohr, R.; van Eldik, R. Ber. Bunsenges. Phys. *Chem.* **1986**, *90*, 609. (150) Heremans, K.; Snauwaert, J.; Rijkenberg, J. In *High Pressure*
- Science and Technology; Timmerhaus, K. D., Barber, M. S., Eds.; Plenum: New York, 1979; Vol. 1, p 646. Hasinoff, B. B. Can. J. Chem. 1976, 54, 1820.
- Hashinoff, B. B. Can. J. Chem. 1979, 57 (152). 77.
- (153) Ishihara, K.; Funahashi, S.; Tanaka, M. Inorg. Chem. 1983, 2 194
- (154) Martinez, P.; van Eldik, R.; Kelm, H. Ber. Bunsenges. Phys. Chem. 1985, 89, 81.
   (155) Ishihara, K.; Funahashi, S.; Tanaka, M. Inorg. Chem. 1983,
- 22.3589
- van Eldik, R.; Breet, E. L. J.; Doss, R.; Mohr, R.; Kelm, H. Mater. Res. Soc. Symp. Proc. 1984, 22, Part 3, 61. Finston, M. I.; Drickamer, H. G. J. Phys. Chem. 1981, 85, 50. (156)
- (157)(158) Funahashi, S. F.; Uchiyama, N.; Tanaka, M. Bull. Chem. Soc.
- Jpn. 1986, 59, 161. (159) Funahashi, S.; Uchimyama, N.; Ishii, M.; Tanaka, M. Inorg.
- Chim. Acta 1987, 128, 169. Lawrance, G. A.; Stranks, D. R.; Sullivan, T. R. Aust. J. (160)
- Chem. 1981, 34, 1763
- (161)
- Lawrance, G. A. Aust. J. Chem. 1985, 38, 1117. Lawrance, G. A.; Stranks, D. R.; Suvachittanont, S. Inorg. (162)Chem. 1979, 18, 82.

(163) Burgess, J.; Hubbard, C. D. J. Chem. Soc., Chem. Commun. 1983, 1482.

van Eldik et al.

- (164) Burgess, J.; Hubbard, C. D. J Am. Chem. Soc. 1984, 106, 1717
- (165) Blandamer, M. J.; Burgess, J.; Duce, P. P.; Payne, K. S.; Sherry, R.; Wellings, P.; Twigg, M. V. Transition Met. Chem. 1984, 9, 163
- (166) Burgess, J.; Hubbard, C. D. Inorg. Chim. Acta 1982, 64, L71.
   (167) Burgess, J.; Duffield, A. J.; Sherry, R. J. Chem. Soc., Chem. Commun. 1980, 350.

- (16) Dulisson, 1980, 350.
  (168) Mikhail, F. M.; Askalani, P.; Burgess, J.; Sherry, R. Transition Met. Chem. 1981, 6, 51.
  (169) Sullivan, T. R.; Stranks, D. R.; Burgess, J.; Haines, R. I.; J. Chem. Soc., Dalton Trans. 1977, 1460.
  (170) Blandamer, M. J.; Burgess, J.; Morcom, K. W.; Sherry, R. Transition Met. Chem. 1983, 8, 354.
  (171) Jones, W. E.; Carey, L. R.; Swaddle, T. W. Can. J. Chem. 1972, 50, 2739.
  (172) Spitzer, U.; van Eldik, R. Inorg. Chem. 1982, 21, 4008.
  (173) Stranks, D. R.; Vanderhoek, N. Inorg. Chem. 1976, 15, 2645.
  (174) van Eldik, R. Inorg. Chim. Acta 1981, 49, 5.
  (175) Palmer, D. A.; Kelm, H. Z. Anorg. Allg. Chem. 1979, 450, 50.
  (176) Funahashi, S.; Inamo, M.; Ishihara, K.; Tanaka, M. Inorg. Chem. 1982, 21, 447.
  (177) Lampbrecht, G. J.; Leipoldt, J. G.; Swaddle, T. W. Inorg. Chim. Acta 1987, 129, 21.
  (178) Lawrance, G. A. Inorg. Chem. 1982, 21, 3687.

- (178) Lawrance, G. A. Inorg. Chem. 1982, 21, 3687.
  (179) Lawrance, G. A. Inorg. Chim. Acta 1981, 54, L225.
- (180) Lawrance, G. A.; Suvachittanont, S. Inorg. Chim. Acta 1980, 44. L61.

- 44, L61.
  (181) Palmer, D. A.; Kelm, H. Inorg. Chem. 1977, 16, 3139.
  (182) Ise, N.; Maruno, T.; Okubo, T. Proc. R. Soc. London, Ser. A 1980, 370, 485.
  (183) Sisley, M. J.; Swaddle, T. W. Inorg. Chem. 1981, 20, 2799.
  (184) Swaddle, T. W. J. Chem. Soc., Chem. Commun. 1982, 832.
  (185) Curtis, N. J.; Lawrance, G. A. Inorg. Chem. 1986, 25, 1033.
  (186) Kitamura, Y. Bull. Chem. Soc. Jpn. 1982, 55, 3625.
  (187) Daffner, G.; Palmer, D. A.; Kelm, H. Inorg. Chim. Acta 1982, 61. 57. 61, 57.
- (188) Kitamura, Y.; Itoh, T.; Takeuchi, M. Inorg. Chem. 1986, 25, 3887.
- (189) Park, Y. C.; Cho, Y. J. J. Korean Chem. Soc. 1985, 29, 629. (190) Oh, S.-O.; Roessling, G.; Lentz, H. Z. Phys. Chem. 1981, 125,
- 183 (191) Kitamura, Y.; Nariyuki, S.; Kondo, T. Bull. Chem. Soc. Jpn. 1984, 57, 285.
- (192) Lawrance, G. A. Polyhedron 1986, 5, 2113.
- (193) Lawrance, G. A.; Suvachittanont, S. Aust. J. Chem. 1980, 33, 273.
- (194)
- Lawrance, G. A. Inorg. Chim. Acta 1980, 45, L275. Kitamura, Y.; van Eldik, R.; Kelm, H. Inorg. Chem. 1984, 23, (195)2038
- (196) Kitamura, Y. Bull. Chem. Soc. Jpn. 1977, 50, 2097.
   (197) Ise, N.; Maruno, T.; Okubo, T. Proc. R. Soc. London, Ser. A
- (19) Ise, IV.; Maruno, T.; Okubo, T. Proc. R. Soc. London, Ser. A 1980, 370, 501.
  (198) van Eldik, R.; Kitamura, Y.; Piriz Mac-Coll, C. P. Inorg. Chem. 1986, 25, 4252.
  (199) Kitamura, Y. Bull. Chem. Soc. Jpn. 1979, 52, 3280.
  (200) Balt, S.; Renkema, W. E.; Ronde, H. Inorg. Chim. Acta 1984, 9 677
- 86. 87.

- 86, 87.
  (201) Caldin, E. F.; Greenwood, R. C. J. Chem. Soc., Faraday Trans. I 1981, 77, 773.
  (202) Funahashi, S.; Yamaguchi, Y.; Ishihara, K.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1982, 976.
  (203) Yoshitana, K. Bull. Chem. Soc. Jpn. 1985, 58, 2778.
  (204) Binstead, R. A.; Beattie, J. K. Inorg. Chem. 1986, 25, 1481.
  (205) Kojima, K.; Saida, M.; Donoue, M.; Matsuda, J. Bull. Chem. Soc. Jpn. 1983, 56, 684. Soc. Jpn. 1983, 56, 684
- Kojima, K.; Miyashita, T.; Matsuda, J. Bull. Chem. Soc. Jpn. (206)1984, 57, 879
- Kojima, K. Bull. Chem. Soc. Jpn. 1987, 60, 603 (207)
- (208)Ishihara, K.; Funahashi, S.; Tanaka, M. Inorg. Chem. 1983, 22.2564
- (209) Inoue, T.; Kojima, K.; Shimozawa, R. Bull. Chem. Soc. Jpn. 1986, 59, 1683.
  (210) Inoue, T.; Kojima, K.; Shimozawa, R. Inorg. Chem. 1983, 22,
- 3972.
- (211) Inoue, T.; Sugahara, K.; Kojima, K.; Shimozawa, R. Inorg. Chem. 1983, 22, 3977.
   (212) Nichols, P. J.; Fresad, Y.; Ducommun, Y.; Merbach, A. E.
- Inorg. Chem. 1984, 23, 4341.
   (213) Hioki, A.; Funahashi, S.; Tanaka, M. Bull. Chem. Soc. Jpn. 1984, 57, 1255.
- (214) Hioki, A.; Funahashi, S.; Tanaka, M. Inorg. Chim. Acta 1983, 76, L151.
- (215) Beattie, J. K.; Kelso, M. T.; Moody, W. E.; Tregloan, P. A. Inorg. Chem. 1985, 24, 415.
  (216) Kitamura, Y.; Ito, T.; Kato, M. Inorg. Chem. 1984, 23, 3836.
  (217) Merbach, A. E.; Moore, P.; Newman, K. E. J. Magn. Reson. 1980, 41, 200

1980, 41, 30.

- (218) Yamada, S.; Iwanaga, A.; Funahashi, S.; Tanaka, M. Inorg.
- (219) Jahnada, S., Juanaga, J., Juanaga, Juana
- Inorg. Chem. 1985, 24, 2468.
- (221) Richens, D. T.; Ducommun, Y.; Merbach, A. E. J. Am. Chem. Soc. 1987, 109, 603.
- (222) Macholdt, H.-T.; van Eldik, R. Transition Met. Chem. 1985, 0, 323.
- Macholdt, H.-T.; Elias, H. Inorg. Chem. 1984, 23, 4315. Blandamer, M. J.; Burgess, J.; Chambers, J. G.; Duffield, A. (223)
- (224)I. Transition Met. Chem. 1981, 6, 156.
- (225)Oh, S. O.; Chung, D. Y.; Cho, I. H. J. Korean Chem. Soc. 1986, 30, 553 (226)
- Fairhurst, M. T.; Swaddle, T. W. Inorg. Chem. 1979, 18, 3241. (227) Taube, D. J.; van Eldik, R.; Ford, P. C. Organometallics 1987,
- (228) Hyde, K. E.; Kelm, H.; Palmer, D. A. Inorg. Chem. 1978, 17,
- (229) Palmer, D. A. Aust. J. Chem. 1979, 32, 2589.
   (230) Weber, W.; Palmer, D. A.; Kelm, M. Inorg. Chim. Acta 1981, 4, L177
- (231) Weber, W.; Palmer, D. A.; Kelm, H. Inorg. Chem. 1982, 21, 1689.
- (232) Ducommun, Y.; Merbach, A. E.; Hellquist, B.; Elding, L. I. Inorg. Chem. 1987, 26, 1759.
   (233) Breet, E. L. J.; van Eldik, R. Inorg. Chem. 1987, 26, 2517.
- (a) Breet, E. L. J.; van Eldik, R.; Kelm, H. Polyhedron 1983, 2, 1181. (b) van Eldik, R.; Breet, E. L. J.; Kotowski, M.; (234)Palmer, D. A.; Kelm, H. Ber. Bunsenges. Phys. Chem. 1983, 904
- (235)
- (236)
- Mahal, G.; van Eldik, R. Inorg. Chem. 1985, 24, 4165. Breet, E. L. J.; van Eldik, R. Inorg. Chem. 1984, 23, 1865. Palmer, D. A.; Kelm, H. Aust. J. Chem. 1979, 32, 1415. (237) Mares, M.; Palmer, D. A.; Kelm, H. Inorg. Chim. Acta 1982, (238)
- 60, 123
- (239)
- (240)(241)
- Kotowski, M.; van Eldik, R. Inorg. Chem 1986, 25, 3896. Palmer, D. A.; Kelm, H. Inorg. Chim. Acta 1980, 39, 275. Mahal, G.; van Eldik, R. Inorg. Chem. 1987, 26, 2838. Laurenczy, G.; Ducommun, Y.; Merbach, A. E. Fast Reac-tions in Solution Discussion Group Meeting, Gargnano, Italy, 1000 1000 (242)
- 1986, 101. (243) Leipoldt, J. G.; van Eldik, R.; Basson, S. S.; Roodt, A. Inorg. Chem. 1986, 25, 4639.
- (244) Burgess, J.; Smith, A. E. Transition Met. Chem. 1987, 12,
- 140.(245) Rindermann, W.; Palmer, D. A.; Kelm, H. Inorg. Chim. Acta
- 1980, 40, 179. (246) Kitamura, Y.; Ida, K. Inorg. Chim. Acta 1984, 88, 161. (247) van Eldik, R.; Palmer, D. A.; Kelm, H. Inorg. Chem. 1979, 18,
- (248) Palmer, D. A.; van Eldik, R.; Kelm, H. Z. Anorg. Allg. Chem. 1980, 468, 77.
- 1980, 405, 77.
  (249) Pisaniello, D. L.; Nichols, P. J.; Ducommun, Y.; Merbach, A. E. Helv. Chim. Acta 1982, 65, 1025.
  (250) Lawrance, G. A.; Stranks, D. R. Inorg. Chem. 1977, 16, 929.
  (251) Lawrance, G. A.; O'Connor, M. J.; Suvachittanont, S.; Stranks, D. R.; Tregloan, P. A. Inorg. Chem. 1980, 19, 3443.
  (252) Lawrance, G. A.; Stranks, D. R.; Suvachittanont, S. Inorg. Chem. 1978, 17, 3322.
  (253) Lawr B. Naczeswa A. Saito K. Inorg. Chem. 1981, 20.

- Ueno, F. B.; Nagasawa, A.; Saito, K. Inorg. Chem. 1981, 20, (253)
- 3504. (254) Turin, E.; Nielson, R. M.; Merbach, A. E. Inorg. Chim. Acta
- 1987, 134, 67. (255) Lawrance, G. A.; Suvachittanont, S. Aust. J. Chem. 1980, 33, 1649.
- (256) Sullivan, T. R. Ph.D. Dissertation, University of Melbourne, 1978.
- (257) Lawrance, G. A.; Suvachittanont, S. J. Coord. Chem. 1979, 9. 13.
- Kitamura, Y.; Nariyuki, S.; Yoshitani, K. Inorg. Chem. 1985, (258)24, 3021
- (259) Louw, W. J.; van Eldik, R.; Kelm, H. Inorg. Chem. 1980, 19, 2878
- (260) Kelm, H.; Louw, W. J.; Palmer, D. A. Inorg. Chem. 1980, 19, 843.
- (261) Mares, M.; Palmer, D. A.; Kelm, H. Inorg. Chim. Acta 1978, 27, 153.
- (262) Jackson, W. G.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M. Aust. J. Chem. 1982, 35, 1561. (263) Jackson, W. G.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M.
- Inorg. Chem. 1980, 19, 904.
   (264) Balt, S.; Musch, J. Ph.; Renkema, W. E.; Ronde, H. J. Phys. E: Sci. Instrum. 1983, 16, 829.
- (265) Palmer, D. A.; van Eldik, R.; Kelm, H. Inorg. Chim. Acta 1978, 30, 83. (266) Rindermann, W.; van Eldik, R.; Kelm, H. Inorg. Chim. Acta
- 1982, 61, 173.
- (267) Rindermann, W.; van Eldik, R. Inorg. Chim. Acta 1983, 68, 35.

- (268)Weber, W.; Maecke, H.; van Eldik, R. Inorg. Chem. 1986, 25, 3093.
- (269)Alexander, R. D.; Holper, P. N. Inorg. Nucl. Chem. Lett. 1978, 14, 309.
- Batstone-Cunningham, R. L.; Dodgen, H. W.; Hunt, J. P.; Roundhill, D. M. J. Chem. Soc., Dalton Trans. 1983, 1473. (270)
- (271)Inamo, M.; Funahashi, S.; Tanaka, M. Inorg. Chim. 1983, 22, 3734.
- (272) Inamo, M.; Funahashi, S.; Tanaka, M. Inorg. Chim. Acta 1983, 76, L93.
- (273) Inamo, M.; Funahashi, S.; Tanaka, M. Inorg. Chem. 1986, 25,
- (274) Hallinan, N.; McArdle, P.; Burgess, J.; Guardado, P. J. Or-ganomet. Chem. 1987, 333, 77.
- Ghazi-Bajat, H.; van Éldik, R.; Kelm, H. Inorg. Chim. Acta (275)1982, 60, 81.
- (276)Spitzer, U.; van Eldik, R.; Kelm, H. Inorg. Chem. 1982, 21, 2821.

- (277) Kitamura, Y.; van Eldik, R. Inorg. Chem. 1987, 26, 2907.
  (278) Kitamura, Y. Bull. Chem. Soc. Jpn. 1985, 58, 2699.
  (279) Walper, M.; Kelm, H. Z. Phys. Chem. N.F. 1978, 113, 207.
  (280) de Waal, D. J. A.; Gerber, T. I. A.; Louw, W. J.; van Eldik, Harry, Chem. 1922, 21, 2009.
- (280) de Waal, D. J. A.; Gerber, T. I. A.; Louw, W. J.; van Eldik, R. Inorg. Chem. 1982, 21, 2002.
  (281) Sisley, M. J.; Rindermann, W.; van Eldik, R.; Swaddle, T. W. J. Am. Chem. Soc. 1984, 106, 7432.
  (282) Ishihara, K.; Swaddle, T. W. Can. J. Chem. 1986, 64, 2168.
  (283) van Eldik, R.; Spitzer, U. Transition Met. Chem. 1983, 8, 351.
  (284) Funahashi, S.; Funada, S.; Inamo, M.; Kurita, R.; Tanaka, M. Inorg. Chem. 1982, 21, 2202.
  (285) Spiccia, L.; Swaddle, T. W. J. Chem. Soc., Chem. Commun. 1985, 67.

- 1985, 67
- (286)
- Spiccia, L.; Swaddle, T. W. Inorg. Chem. 1987, 26, 2265. Nielson, R. M.; Hunt, J. P.; Dodgen, H. W.; Wherland, S. Inorg. Chem. 1986, 25, 1964. (287)
- (288) Sato, M.; Yamada, T. In *High Pressure Science and Technology*; Vodar, B., Marteau, Ph. Eds.; Pergamon Press: Oxford, 1980; Vol. 2, p 812.
  (289) Krack, I.; Braun, P.; van Eldik, R. *Physica* 1986, 139/140B,
- 680.
- (290) Braun, P.; van Eldik, R. J. Chem. Soc., Chem. Commun. **1985**, 1349. van Eldik, R. Inorg. Chem. **1982**, 21, 2501.
- (291)
- van Eldick, R.; Palmer, D. A.; Kelm, H. Inorg. Chim. Acta 1978, 29, 53. (292)
- (293)
- (294)(295)
- van Eldik, R.; Kelm, H. Inorg. Chim. Acta 1982, 60, 177. van Eldik, R.; Kelm, H. Inorg. Chim. Acta 1983, 73, 91. Sasaki, Y.; Endo, K.; Nagasawa, A.; Saito, K. Inorg. Chem. 1986, 25, 4845. (296)
- Krack, I.; van Eldik, R. Inorg. Chem. 1986, 25, 1743. Kanesato, M.; Ebihara, M.; Sasaki, Y.; Saito, K. J. Am. (297)
- (29) Kalesaw, M., Ebilara, M., Saski, T., Sato, K. J. Am. Chem. Soc. 1983, 105, 5711.
   (298) van Eldik, R. Inorg. Chem. 1983, 22, 353.
   (299) Sasaki, Y.; Ueno, F. B.; Saito, K. J. Chem. Soc., Chem. Com-mun. 1981, 1135.
- (300) Ebihara, M.; Sasaki, Y.; Kubota, S. T.; Saito, K. Bull. Chem. Soc. Jpn. 1987, 60, 391.
   (301) Sasaki, Y.; Ninomiya, T.; Nagasawa, A.; Endo, K.; Saito, K. Inorg. Chem. 1987, 26, 2164.
   (302) Ebihara, M.; Bulland, C., Saito, K. Janog, Chem. 1987, 26, 2164.
- (302) Bin Ali, R.; Blandamer, M. J.; Burgess, J.; Guardado, P. Inorg. Chim. Acta 1987, 131, 59.
   (303) Angermann, K.; van Eldik, R.; Kelm, H.; Wasgestian, F. Inorg. Chem. 1981, 20, 955.

- (304) Kirk, A. D.; Porter, G. B.; Rampi-Scandola, M. A. Inorg. Chim. Acta 1984, 90, 161.
   (305) Angermann, K.; van Eldik, R.; Kelm, H.; Wasgestian, F. Inorg. Chim. Acta 1981, 49, 247.
- Inorg. Chim. Acta 1981, 49, 247.
  (306) Kirk, A. D.; Namasivayam, C.; Porter, G. B.; Rampi-Scandola, M. A.; Simmons, A. J. Phys. Chem. 1983, 87, 3108.
  (307) Fetterolf, M. L.; Offen, H. W. Inorg. Chem. 1987, 26, 1070.
  (308) Weber, W.; Ford, P. C. Inorg. Chem. 1986, 25, 1088.
  (309) Weber, W.; van Eldik, R. Inorg. Chim. Acta 1984, 85, 147.
  (310) Weber, W.; Kuester, U.; van Eldik, R.; Kelm, H. Mater. Res. Soc. Symp. Proc. 1984, 22, Part 3, 65.
  (311) Wieland, S.; DiBenedetto, J.; van Eldik, R.; Ford, P. C. Inorg. Chem. 1986, 25, 4893

- (311) Wieland, S., Difference to, S., Van Eldik, R., Ford, T. C. Inorg. Chem. 1986, 25, 4893.
   (312) Skibsted, L. H.; Weber, W.; van Eldik, R.; Kelm, H.; Ford, P. C. Inorg. Chem. 1983, 22, 541.
   (313) Stochel, G.; van Eldik, R.; Stasicka, Z. Inorg. Chem. 1986, 25,
- 3663
- (314) Tanaka, H. K.; Sasaki, Y.; Saito, K. Sci. Papers Inst. Phys. Chem. Res. 1984, 78, 92. (315) Ueno, F. B.; Sasaki, Y.; Ito, T.; Saito, K. J. Chem. Soc., Chem.

- (315) Ueno, F. B.; Sissaki, F.; Ho, F.; Satto, R. J. Chem. Soc., Chem. Commun. 1982, 328.
  (316) Weber, W.; van Eldik, R. Inorg. Chim. Acta 1986, 111, 129.
  (317) Lee, S. H.; Waltz, W. L.; Demmer, D. R.; Walters, R. T. Inorg. Chem. 1985, 24, 1531.
  (318) Fetterolf, M. L.; Offen, H. W. J. Phys. Chem. 1986, 90, 1828.
  (319) Weber, W.; DiBenedetto, J.; Offen, H.; van Eldik, R.; Ford, P. C. Inorg. Chem. 1984, 23, 2033.
  (200) DiBurghetto, L. Wetto, B. L. Ford, P. C. Lagar, Chem. 1984.
- (320) DiBenedetto, J.; Watts, R. J.; Ford, P. C. Inorg. Chem. 1984,
- 23, 3039.

- (321) Amir-Ebrahimi, V.; McCarvey, J. J. Inorg. Chim. Acta 1984, 89. L39
- 89, L39.
  (322) Langford, C. H.; Gray, H. B. Ligand Substitution Processes; W. A. Benjamin: New York, 1965.
  (323) van Eldik, R., ref 24, p 58.
  (324) Ducommun, Y.; Merbach, A. E., ref 24, p 69.
  (325) Swaddle, T. W. Inorg. Chem. 1980, 19, 3203.
  (326) Swaddle, T. W.; Mak, M. K. S. Can. J. Chem. 1983, 61, 473.
  (327) Swaddle, T. W. Inorg. Chem. 1983, 22, 2663.
  (328) Langford, C. H. Inorg. Chem. 1979, 18, 3288.
  (329) Newman, K. E.; Merbach, A. E. Inorg. Chem. 1980, 19, 2481.
  (30) Abou-El-Wafe, M. H. M.; Burnett, M. G. J. Chem. Soc., Chem. Commun. 1983, 833.

- Chem. Commun. 1983, 833
- (331)van Eldik, R., ref 24, p 153
- (551) van Eldik, K., rei 24, p 153.
  (332) Guastalla, G.; Swaddle, T. W. Can. J. Chem. 1973, 51, 821.
  (333) Kitamura, Y. Inorg. Chem. 1985, 24, 2.
  (334) Dixon, N. E.; Jackson, W. G.; Marty, W.; Sargeson, A. M. Inorg. Chem. 1982, 21, 688.
  (335) Elder, R. C.; Heeg, M. J.; Payne, M. D.; Trkula, M.; Deutsch, E. Inorg. Chem. 1978, 17, 431.
  (336) Anstock, M.; Taube, D.; Gross, D. C.; Ford, P. C. J. Am. Chem. Soc. 1984, 106 3696.

- Chem. Soc. 1984, 106, 3696.
   Taube, D.; Ford, P. C. Organometallics 1986, 5, 99.
   Kotowski, M.; van Eldik, R., ref 24, p 219.
   Conze, E. G.; Stieger, H.; Kelm, H. Chem. Ber. 1972, 105, 2007.
- (337)
- (338)
- (339)2334.
- (340) Romeo, R.; Minitti, D.; Trozzi, M. Inorg. Chim. Acta 1975, 4. L15
- (341) Romeo, R.; Minitti, D.; Trozzi, M. Inorg. Chem. 1976, 15, 134.
- (342) Romeo, R.; Minitti, D.; Lanza, S. Inorg. Chem. 1979, 18, 2362.
  (343) van Eldik, R. Adv. Inorg. Bioinorg. Mech. 1984, 3, 275.
  (344) Palmer, D. A.; van Eldik, R. Chem. Rev. 1983, 83, 651.

- van Eldik, R.; Palmer, D. A. J. Solution Chem. 1982, 11, 339. (345)
- (346) Aygen, S.; Kitamura, Y.; Kuroda, K.; Kume, R.; Kelm, H.; van Eldik, R. *Inorg. Chem.* 1985, 24, 423.
   (347) Aygen, S.; Paulus, E. F.; Kitamura, Y.; van Eldik, R. *Inorg.*
- (348) Stranks, D. R. Pure Appl. Chem. 1974, 38, 303.
   (349) Swaddle, T. W., ref 24, p 273.
   (350) Heremans, K.; Bormans, M.; Snauwaert, J.; Vandersypen, H.

- Faraday Discuss. Chem. Soc. 1982, 74, 343.
- (351) Wherland, S. Inorg. Chem. 1983, 22, 2349 and corrections mentioned in ref 349.
- (352) Krack, I. Ph.D. Dissertation, University of Frankfurt, 1987.
   (353) Matthews, B. A.; Watts, D. W. Inorg. Chim. Acta 1974, 11,

- (354) Ford, P. C., ref 24, p 295.
  (355) van Eldik, R.; ref 6, p 357.
  (356) Wilson, R. B.; Solomon, E. I. J. Am. Chem. Soc. 1980, 102, 4085.
- (357) Hakamata, K.; Urushlyama, A.; Kupka, H. J. Phys. Chem. 1981, 85, 1983.
- (358) Heremans, K., ref 24, p 339. (359) Wong, P. T. T., ref 6, p 381.

- (360) Weber, G., ref 6, p 401.
  (361) Heremans, K., ref 6, p 421.
  (362) Jaenicke, R. Annu. Rev. Biophys. Bioeng. 1981, 10, 1.

- (363) Heremans, K. Annu. Rev. Biophys. Bioeng. 1982, 11, 1.
   (364) Weber, G.; Drickamer, H. G. Q. Rev. Biophys. 1983, 16, 89.
   (365) Wong, P. T. T. Annu. Rev. Biophys. Bioeng. 1984, 13, 1.
   (366) Nieuwenhuysen, P.; Heremans, K.; Clauwaert, J. Biochem.
- (300) Niedwahrd ys. Acta 1980, 606, 292.
  (367) Messana, C.; Cerdonio, M.; Shenkin, P.; Noble, R. W.; Fermi, G.; Perutz, R. N.; Perutz, M. F. Biochemistry 1978, 17, 3652.
  (368) Morishima, I.; Ogawa, S.; Yamada, H. Biochemistry 1980, 19,
- 1569
- Heremans, K.; Bormans, M. Physica 1986, 139/140B, 870.
- (370) Scheidt, W. R.; Cohen, I. A.; Kastner, M. E. Biochemistry 1979, 18, 3546.
- (371) Dreyer, U.; Ilgenfritz, G. Biochem. Biophys. Res. Commun. 1979, 87, 1011
- (372) (a) Hui Bon Hoa, G.; Marden, M. C. Eur. J. Biochem. 1982, 124, 311. (b) Marden, M. C.; Hui Bon Hoa, G. Eur. J. Biochem. **1982**, *129*, 111. (373) Fisher, M. T.; Scarlata, S. F.; Sligar, S. G. Arch. Biochem.
- Biophys. 1985, 240, 456
- (374) Kornblatt, J. A.; Hui Bon Hoa, G. Biochemistry 1982, 21, 439
- (375) Caldin, E. F.; Hasinoff, B. B. J. Chem. Soc., Faraday Trans. I 1975, 515.
- (376) Hasinoff, B. B. Biochemistry 1974, 13, 3111.
- (377) Ogunmola, G. B.; Kauzmann, W.; Zipp, A. Proc. Natl. Acad. Sci. U.S.A. 1976, 73, 4271.
- (378) Ralston, I. M.; Dunford, H. B.; Wauters, J.; Heremans, K. Biophys. J. 1981, 36, 311.
   (379) Hui Bon Hoa, G.; Douzou, P.; Dahan, N.; Balny, C. Anal.
- Biochem. 1982, 120, 125
- Lambeir, A.; Heremans, K.; Dunford, H. B. Biophys. Chem. (380)1983, 18, 195.

(381) Heremans, K.; Snauwaert, J.; Rijckenberg, J. Proc. 6th Int. Conf. High Pressure 1977

van Eldik et al.

- (382) Ralston, I. M.; Watters, J.; Heremans, K.; Dunford, H. B. Biophys. Chem. 1982, 15, 15.
  (383) Balny, C.; Travers, F.; Barman, T.; Douzou, P. Eur. Biophys.
- J. 1987, 14, 375.
- (384) Lang, E.; Rauchschwalbe, R.; Lüdemann, H.-D. *High Temp.-High Press*. 1977, 9, 519.
  (385) Rauchschwalbe, R.; Völkel, G.; Lang, E.; Lüdemann, H.-D. J. *Chem. Res.* (S) 1978, 448.
  (386) Hauer, J.; Völkel, G.; Lüdemann, H.-D. J. *Chem. Res.* (S)
- 1980, 16.
- (387) Hauer, J.; Völkel, G.; Lüdemann, H.-D. Chem. Phys. Lett. 1981, 78, 85.
  (388) Völkel, G.; Hauer, J.; Lüdemann, H.-D. Angew. Chem., Int.
- Ed. Engl. 1980, 19, 945. (389) Hauer, J.; Treml, E.; Lüdemann, H.-D.; Mannschreck, A. J. Chem. Res. (S) 1982, 14.
- (390)Hauer, J.; Treml, E.; Lüdemann, H.-D. J. Chem Res. (S) 1982, 40.
- (391) Hauer, H.; Lüdemann, H.-D.; Jaenicke, R. Z. Naturforsch. C: Biosci. 1982, 37c, 51.
- (392) Klimke, G.; Hauer, J.; Lüdemann, H.-D.; Pfleiderer, W. J. Chem. Res. (S) 1981, 80
- (393) Hauer, J.; Lüdemann, H.-D.; Verhoeven, J. W. Z. Naturforsch. C: Biosci. 1981, 36c, 366.
  (394) Lüdemann, H.-D.; Lang, E.; Westhof, E. FEBS Lett. 1977, 80,
- 107.
- (395) Hauer, J.; Treml, E.; Lüdemann, H.-D. J. Chem. Res. (S)
- (396)
- 1982, 42. Asano, T. J. Am. Chem. Soc. 1980, 102, 1205. Asano, T.; Yano, T.; Okada, T. J. Am. Chem. Soc. 1982, 104, (397)4900.
- (398)Asano, T.; Okada, T.; Shinka, S.; Shigematsu, K.; Kusano, Y.; Manabe, O. J. Am. Chem. Soc. 1981, 103, 5161. Asano, T.; Okada, T. J. Org. Chem. 1984, 49, 4387. Nishimura, N.; Tanaka, T.; Sueishi, Y. J. Chem. Soc., Chem.
- (399)
- (400)Commun. 1985, 903.
- (401) Nishimura, N.; Kosako, S.; Sueishi, Y. Bull. Chem. Soc. Jpn. 1984, 57, 1617
- (402) Nishimura, N.; Tanaka, T.; Asano, M.; Sueishi, Y. J. Chem. Soc., Perkin Trans. 2 1986, 1839.
- (403) Asano, T.; Okada, T. J. Org. Chem. 1986, 51, 4454.
  (404) Asano, T.; Okada, T. Chem. Lett. 1987, 695.
  (405) van Eldik, R.; Kelm, H.; Schmittel, M.; Rüchardt, C. J. Org.
- Chem. 1985, 50, 2998. (406) Neuman, R. C.; Binegar, G. A. J. Am. Chem. Soc. 1983, 105,
- (407)
- Asano, T.; Okada, T. Chem. Lett. 1987, 691. Sueishi, Y.; Nishimura, N. Bull. Chem. Soc. Jpn. 1983, 56, (408)2598.
- Sueishi, Y.; Ohtani, K.; Nishimura, N. Bull. Chem. Soc. Jpn. (409)1985, 58, 810. Sueishi, Y.; Ohcho, M.; Nishimura, N. Bull. Chem. Soc. Jpn.
- (410)
- (410) Sueishi, Y.; Ohcho, M.; Yamamoto, S.; Nishimura, N. Bull. Chem. Soc. Jpn. 1986, 59, 3666.
  (412) Imashev, U. B.; Zorin, V. V.; Kalashnikov, S. M.; Zlotskii, S. S.; Zhulin, V. M.; Rakhmankulov, D. L. Dokl. Akad. Nauk SSSR 1978, 242, 140
- (413) Lapshova, A. A.; Stashina, G. A.; Zorin, V. V.; Zlotskii, S. S.; Zhulin, V. M.; Rakhmankulov, D. L. Zh. Org. Khim. 1980, 16, 1251.
- (414) Botnikov, M. Ya.; Zlotskii, S. S.; Zorin, V. V.; Kravets, E. Kh.; Zhulin, V. M.; Rakhmankulov, D. L. Izv. Acad. Nauk SSSR, Ser. Khim. 1977, 690. (415) Pastushenko, E. V.; Botnikov, M. Ya.; Zlotskii, S. S.; Zhulin,
- V. M.; Rakhmankulov, D. L. React. Kinet. Catal. Lett. 1981, 16, 195.
- Buback, M.; Lendle, H. Z. Naturforsch. 1979, 34a, 1482. (416)
- (417) Kimura, Y.; Yoshimura, Y.; Nakahara, M. Chem. Lett. 1987,
- (418) Neuman, R. C.; Lockyer, G. D. J. Am. Chem. Soc. 1983, 105, 3982.
- 3982.
  (419) Neuman, R. C.; Amrich, M. J. J. Org. Chem. 1980, 45, 4629.
  (420) Zhulin, V. M.; Stashina, G. A.; Rozantsev, E. G. Izv. Akad. Nauk SSSR, Ser. Khim. 1979, 977.
  (421) Ogo, Y.; Kojima, M. High Temp.-High Press. 1981, 13, 321.
  (422) Zhulin, V. M.; Starostin, E. K.; Moryasheva, S. I.; Nikishin, G. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1979, 1237.
  (423) Zhulin, V. M.; Lipovich, T. V.; Antonovskii, V. L. Izv. Akad. Nauk SSSR, Ser. Khim. 1984, 2473.
  (424) Schulman F. M. Warhach A. E.: le Noble W. J. J. Org.

- (424) Schulman, E. M.; Merbach, A. E.; le Noble, W. J. J. Org. Chem. 1982, 47, 431. Buback, M.; Lendle, H. Z. Naturforsch. 1982, 36a, 1371

(426) Mehrling, P.; Luft, G.; Giese, B.; Seidl, H. Chem. Ber. 1985,

(427) Luft, G.; Mehrling, P.; Seidl, H. Angew. Makromol. Chem. 1978, 73, 95.

(428) Mehrling, P.; Luft, G.; Giese, B.; Seidl, H. Chem. Ber. 1985,

(425)

118, 240.

118, 240.

- (429) Luft, G.; Lim, P.-C.; Pavlakis, S.; Seidl, H. J. Macromol. Sci.,
- (420) Litti, G., Lini, T. C., Javakis, S., Seidi, H. S. Matromot. Sci., Chem. 1985, A22, 1183.
   (430) Zhulin, V. M.; Rudakov, O. B.; Stashina, G. A.; Ganyushkin, A. V.; Yablokov, V. A.; Vainberg, N. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1985, 1979.
- (431) Neuman, R. C.; Sylvester, A. P. J. Org. Chem. 1983, 48, 2285.
   (432) Brower, K. R. J. Org. Chem. 1980, 45, 1004.
- (433) Grønlund, F.; Andersen, B. Acta Chem. Scand., Ser. A 1979, 33, 329.
- Lim, P.-C.; Luft, G. Makromol. Chem. 1983, 184, 849 (434)
- (435) Luft, G.; Lim, P.-C.; Yokawa, M. Makromol. Chem. 1983, 184, 207.
- (436) Moore, P. W.; Clouston, J. G.; Chaplin, R. P. J. Polym. Sci., Polym. Chem. Ed. 1981, 19, 1659. (437) Moore, P. W.; Clouston, J. G.; Chaplin, R. P. J. Polym. Sci.,
- Polym. Chem. Ed. 1983, 21, 2491. (438) Moore, P. W.; Clouston, J. G.; Chaplin, R. P. J. Polym. Sci.,
- Polym. Chem. Ed. 1983, 21, 2503.
- Polym. Chem. Ed. 1983, 21, 2503.
  (439) Marriott, P. R.; Griller, D. J. Am. Chem. Soc. 1981, 103, 1521.
  (440) Yasmenko, A. I.; Khudyakov, I. V.; Darmanjan, A. P.; Kuzmin, V. A.; Claesson, S. Chem. Scr. 1981, 18, 49.
  (441) Margulis, L. A.; Darmanjan, A. P. Khim. Fiz. 1985, 4, 963.
  (442) Yablokov, V. A.; Ganyushkin, A. V.; Botnikov, M. Ya.; Zhulin, V. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1978, 484.
  (443) Yablokov, V. A.; Ganyushkin, A. V.; Botnikov, M. Ya.; Zhulin, V. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1978, 484.
  (443) Yablokov, V. A.; Ganyushkin, A. V.; Botnikov, M. Ya.; Zhulin, V. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1981, 950.
  (444) Ie Noble, W. J.; Daka, M. R. J. Am. Chem. Soc. 1978, 100, 5961.

- 5961.
- (445) Schulman, E. M.; Merbach, A. E.; Turin, M.; Wedinger, R.; le Noble, W. J. J. Am. Chem. Soc. 1983, 105, 3988.
   (446) Sugiyama, S.; Takeshita, H. Chem. Lett. 1986, 1203.

- (447) Sugiyama, S.; Mori, A.; Takeshita, H. Chem. Lett. 1987, 1247.
   (448) Stashina, G. A.; Vasil'vitskaya, E. M.; Gamalevich, G. D.; El'yanov, B. S.; Serebryakov, E. P.; Zhulin, V. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1986, 329.
- (449) Abed, O. H.; Issacs, N. S. J. Chem. Soc., Perkin Trans. 2 1983, 839
- (450) Mündnich, R.; Plieninger, H. Tetrahedron 1978, 34, 887.
  (451) le Noble, W. J.; Brower, K. R.; Brower, C.; Chang, S. J. Am. Chem. Soc. 1982, 104, 3150.
  (452) Isaacs, N. S.; Laila, A. H. Tetrahedron Lett. 1983, 24, 2897.
- Sasaki, M.; Tsuzuki, H.; Okamoto, M. J. Org. Chem. 1979, 44, (453)
- 652 (454) Sasaki, M.; Tsuzuki, H.; Osugi, J. J. Chem. Soc., Perkin Trans. 2 1980, 1596.
- (455)Papadopoulos, M.; Jenner, G. Nouv. J. Chim. 1984, 8, 729. (456) Uosaki, Y.; Nakahara, M.; Osugi, J. Int. J. Chem. Kinet.
- 1983, 15, 805 (457)Jouanne, J.; Kelm, H.; Huisgen, R. J. Am. Chem. Soc. 1979,
- 101, 151.
- (458) Wiering, P. G.; Steinberg, H. Recl. J. R. Neth. Chem. Soc. 1982, 101, 267. Wiering, P. G.; Steinberg, H. Recl. Trav. Chim. Pays-Bas
- (459)1986, 105, 394.
- Jenner, G.; Papadopoulos, M. J. Org. Chem. 1986, 51, 585. Tsuzuki, H.; Uosaki, Y.; Nakahara, M.; Sasaki, M.; Osugi, J. (460)
- (461)Bull. Chem. Soc. Jpn. 1982, 55, 1348.
- (462)Swieton, G.; van Jouanne, J.; Kelm, H.; Huisgen, R. J. Chem. Soc., Perkin Trans. 2 1983, 37
- (463) Papadopoulos, M.; Jenner, G. Tetrahedron Lett. 1982, 23, 1889.
- Jenner, G.; Papadopoulos, M.; le Noble, W. J. Nouv. J. Chim. 1983, 7, 687. (464)
- (465) Papadopoulos, M.; Jenner, G. Bull. Soc. Chim. Fr. 1982, II-313.
- (466) Rimmelin, J.; Jenner, G.; Rimmelin, P. Bull. Soc. Chim. Fr. 1978, II-461.
- (467) Jenner, G.; Rimmelin, J.; Antoni, F.; Libs, S.; Schleiffer, E. Bull. Soc. Chim. Fr. 1980, II-65.
  (468) Jenner, G.; Rimmelin, J. Tetrahedron Lett. 1980, 21, 3039.
  (469) Swieton, G.; Kelm, H. J. Chem. Soc., Perkin Trans. 2 1979, 519.
- (470) Rimmelin, J.; Jenner, G.; Abdi-Oskoui, H. Bull. Soc. Chim.
- *Fr.* 1977, 341. (471) Jenner, G.; Abdi-Oskoui, H.; Rimmelin, J.; Libs, S. *Bull. Soc.* Chim. Fr. 1979, II-33.
- Abdi-Oskoui, H.; Jenner, G. J. Chem. Res. (S) 1977, 110. Takeshita, H.; Sugiyama, S.; Hatsui, T. Bull. Chem. Soc. Jpn. (473)
- (474) Zhulin, V. M.; Stashina, G. A. Izv. Akad. Nauk SSSR, Ser.
- Khim. 1977, 2586. (475) Isaacs, N. S.; van der Beeke, P. Tetrahedron Lett. 1982, 23,
- 2147.
- (476) Isaacs, N. S.; van der Beeke, P. G. J. J. Chem. Soc., Perkin Trans. 2 1982, 1205. (477)Jenner, G.; Papadopoulos, M. Tetrahedron Lett. 1982, 23,
- Papadopoulos, M.; Jenner, G. Nouv. J. Chim. 1983, 7, 463.
- (479) George, A. V.; Isaacs, N. S. J. Chem. Soc., Perkin Trans. 2

1985, 1845

- Jenner, G.; Papadopoulos, M.; Rimmelin, J. J. Org. Chem. 1983, 48, 748. (480)
- (481) Swieton, G.; Jouanne, J.; Kelm, H. J. Org. Chem. 1983, 48, 1035.
- (482) Yoshimura, Y.; Osugi, J.; Nakahara, M. Bull. Chem. Soc. Jpn.
- (483) Zhulin, V. M.; Makarov, Z. G.; Krayushkin, M. M.; Zhulav-leva, E. B.; Beskopyl'nyi, A. M. Dokl. Akad. Nauk SSSR 1985, 280, 917
- (484) Yoshimura, Y.; Osugi, J.; Nakahara, M. J. Am. Chem. Soc. 1983, 105, 5414. (485) Zhulin, V. M.; Zhuravleva, E. B. Dokl. Akad. Nauk SSSR
- 1986, *29*0, 383
- (486) Takeshita, H.; Sugiyama, S.; Hatsui, T. J. Chem. Soc., Perkin Trans. 2 1986, 1491.
- (487) Sugiyama, S.; Takeshita, H. Bull. Chem. Soc. Jpn. 1987, 60, 977
- (488)
- Jenner, G.; Papadopoulos, M. J. Org. Chem. 1982, 47, 4201. Ben Salem, R.; Jenner, G. Tetrahedron Lett. 1986, 27, 1575. Jenner, G.; Ben Salem, R. New J. Chem. 1987, 11, 677. (489)490)
- (491) Papadopoulos, M.; Jenner, G. Tetrahedron Lett. 1981, 22, 2773.
- (492) Klärner, F.-G.; Dogan, B. M. J.; Ermer, O.; von E. Doering, W.; Cohen, M. P. Angew. Chem., Int. Ed. Engl. 1986, 25, 108.
- (493) Turro, N. J.; Okamoto, M.; Gould, I. R.; Moss, R. A.; Law-rynowicz. W.; Hadel, L. M. J. Am. Chem. Soc. 1987, 109,
- (494) Pajak, J.; Brower, K. R. Energy Fuels 1987, 1, 363.
   (495) Pajak, J.; Brower, K. R. J. Org. Chem. 1985, 50, 2210.

- (496) Brower, K. R. J. Org. Chem. 1982, 47, 1889.
  (497) Sera, A.; Yamada, H.; Yasuda, T. Chem. Lett. 1979, 1405.
  (498) Kwun, O. C.; Kyong, J. B. Bull. Korean Chem. Soc. 1985, 6, 259.
- (499) Kwun, O. C.; Kyong, J. B. Daehan Hwahak Hwoejee 1986, 30, 188.
- (500) Kwun, O. C.; Kyong, J. B.; Choi, J. K. Daehan Hwahak Hwoejee 1986, 30, 301.
  (501) Kwun, O. C.; Kyong, J. B.; Shin, Y. K. Daehan Hwahak Howjee 1986, 30, 40.
- (502) Sera, A.; Takeuchi, S.; Tachikawa, N.; Maruyama, K. Bull. *Chem. Soc. Jpn.* **1979**, *52*, 1112. (503) Lohmüller, R.; Macdonald, D. D.; Mackinnon, M.; Hyne, J.
- B. Can. J. Chem. 1978, 56, 1739. (504) Jenner, G.; Srivastava, S.; le Noble, W. J. Tetrahedron Lett.
- (505) Viana, C. A. N.; Goncalves, R. M. C. J. Chem. Soc., Faraday Trans. 1 1980, 76, 753.
   (506) Saluja, P. P. S.; Whalley, E. J. Chem. Soc., Chem. Commun.
- 1983, 552.
- Sera, A.; Yamada, H.; Masaki, H. Chem. Lett. 1980, 1533. (507) (508)
- Everaert, J.; Persoons, A. J. Phys. Chem. 1982, 86, 546. le Noble, W. J.; Gebicka, E.; Srivastava, S. J. Am. Chem. Soc. (509)
- 1982, 104, 3153, 6167.
- (510) Tanigushi, Y.; Iguchi, A. J. Am. Chem. Soc. 1983, 105, 6782.
  (511) Ishiwatari, T.; Maruno, T.; Okubo, M.; Okubo, T.; Ise N. J. Phys. Chem. 1981, 85, 47.
- (512) Issacs, N. S.; Najem, T. S.; van Eldik, R. Tetrahedron Lett.
- 1987, 28, 3043.
  (513) Glugla, P. G.; Byon, J. H.; Eckert, C. A. Ind. Eng. Chem. Fundam. 1985, 24, 379.
- (514) Katritzky, A. R.; Sakizadeh, K.; Gabrielsen, B.; le Noble, W. . J. Am. Chem. Soc. 1984, 106, 1879.
- (515) Hwang, J.-U.; Chung, J.-J.; Yoh, S.-D.; Jee, J.-G. Bull. Korean Chem. Soc. 1983, 4, 237.
  (516) Yoh, S.-D.; Park, J.-H. Daehan Hwahak Hwoejee 1984, 28,
- 143
- (517) Yoh, S.-D.; Park, J.-H.; Lee, K.-A.; Han, I.-S. Bull. Chem. Soc. Jpn. 1987, 60, 1149. (518) Yoh, S.-D.; Park, J.-H. Rep. Res. Inst. Phys. Chem. Kyung-
- pook Natl. Univ. 1985, 43 (519) Hwang, J.-U.; Yoh, S.-D.; Jee, J.-G. Daehan Hwahak Hwoe-
- jee 1980, 24, 150. (520) Kondo, Y.; Zanka, A.; Kusabayashi, S. J. Chem. Soc., Perkin
- Trans. 2 1985, 827. (521) Kondo, Y.; Hirano, S.; Tokura, N. J. Chem. Soc., Perkin
- Trans. 2 1979, 1738
- (522) Kondo, Y.; Yamada, T.; Kusabayashi, S. J. Chem. Soc., Perkin Trans. 2 1981, 414.
  (523) Yamada, T.; Kondo, Y.; Kusabayashi, S. Bull. Chem. Soc.
- (523) Yamada, T.; Kondo, Y.; Kusabayashi, S. Bull. Chem. Soc. Jpn. 1982, 55, 2911.
  (524) Dorokhov, V. A.; Stashina, G. A.; Zhulin, V. M.; Mikhailov, B. M. Dokl. Akad. Nauk SSSR 1981, 258, 351.
  (525) Kuokkanen, T. Finn. Chem. Lett. 1980, 7, 189.
  (526) Kuokkanen, T. Finn. Chem. Lett. 1981, 8, 53.
  (527) Kuokkanen, T. Finn. Chem. Lett. 1984, 11, 38.
  (528) Hashida, Y.; Landells, R. G. M.; Lewis, G. E.; Szele, I.; Zol-linger, H. J. Am. Chem. Coc. 1978, 100, 2816.

- linger, H. J. Am. Chem. Soc. 1978, 100, 2816. (529) Kuokkanen, T. Finn. Chem. Lett. 1980, 7, 192. (530) Kuokkanen, T. Finn. Chem. Lett. 1986, 13, 111.

- (531) le Noble, W. J.; Bitterman, S.; Staub, P.; Meyer, F. K.; Merbach, A. E. J. Org. Chem. 1979, 44, 3263. le Noble, W. J., Merbach, A. E.; Schulman, E. M. J. Org.
- (532)
- Chem. 1981, 46, 3352. Issacs, N. S.; Rzepa, H. S.; Sheppard, R. N.; Lobo, A. M.; Prabhakar, S.; Merbach, A. E. J. Chem. Soc., Perkin Trans. (533)2 1987, 147
- Jee, J.-G.; Ree, T. Bull. Korean Chem. Soc. 1987, 8, 31. Nusselder, J. J. H.; Engberts, J. B. F. N. J. Org. Chem. 1987,
- (535)52, 3159.
- (536) Haak, J. R.; Engberts, J. B. F. N.; Blandamer, M. J. J. Am. Chem. Soc. 1985, 107, 6031.
- (537) Makimoto, S.; Suzuki, K.; Taniguchi, Y. Bull. Chem. Soc. Jpn. 1984, 57, 175.
   (538) Holterman, H. A. J.; Engberts, J. B. F. N. J. Am. Chem. Soc.
- 1982, 104, 6382.
- Taniguchi, Y.; Sugiyama, N.; Suzuki, K. J. Phys. Chem. 1978, (539)82, 1231.
- Tanigushi, Y.; Inoue, O.; Suzuki, K. Bull. Chem. Soc. Jpn. 1979, 52, 1327. (540)
- (541) Taniguchi, Y.; Mata-Segreda, J. F. Chem. Express 1986, 1, 535.

- (542) Kurz, J. L.; Lu, J. Y.-W. J. Phys. Chem. 1983, 87, 1444.
  (543) Isaacs, N. S.; Najem, T. S. Can. J. Chem. 1986, 64, 1140.
  (544) Issacs, N. S.; Abed, O. H. Tetrahedron Lett. 1986, 27, 1209.
  (545) Ramirez, F.; Marecek, J.; Minore, J.; Srivastava, S.; le Noble, W. J. J. Am. Chem. Soc. 1986, 108, 348.
  (546) Taniguchi, Y.; Makimoto, S.; Suzuki, K. J. Phys. Chem. 1981, 95, 0016.
- 85. 2**2**18
- (547) Okubo, T.; Ueda, M.; Sugimura, M.; Kitano, H.; Ise, N. J. Phys. Chem. 1983, 87, 1224.
- (548) Morild, E.; Aksnes, G. Acta Chem. Scand., Ser. A 1981, 35, 169
- (549) le Noble, W. J.; Srivastava, S.; Breslow, R.; Trainor, G. J. Am.
- (616) Chem. Soc. 1983, 105, 2745.
   (550) Makimoto, S.; Suzuki, K.; Taniguchi, Y. Bull. Chem. Soc. Jpn. 1983, 56, 1341.
- (551)Taniguchi, Y.; Makimoto, S.; Suzuki, K. J. Phys. Chem. 1981, 85, 3469.
- (552) Makimoto, S.; Suzuki, K.; Taniguchi, Y. J. Phys. Chem. 1982, 86, 4544
- (553) Isaacs, N. S.; Najem, T. J. Chem. Soc., Chem. Commun. 1984, 1362.
- (554) Brower, K. R.; Hughes, D. J. Am. Chem. Soc. 1978, 100, 7591.
   (555) Asano, T.; Okada, T. Bull. Chem. Soc. Jpn. 1981, 54, 3585.
   (556) Sen, A. K.; Palit, S. K.; Mazumdar, S. Indian J. Chem. 1977,
- 15B, 649.
  (557) Hill, J. S.; Isaacs, N. S. Tetrahedron Lett. 1986, 27, 5007.
  (558) Isaacs, N. S.; Javaid, K.; Rannala, E. J. Chem. Soc., Perkin Trans. 2 1978, 709.
- Andersen, B.; Grønlund, F. Acta Chem. Scand., Ser. A 1979, (559)33, 275.
- (560) O'Connor, C. J.; Odell, A. L.; Bailey, A. A. T. Aust. J. Chem. 1983, 36, 279.
  (561) Isaacs, N. S.; Javaid, K.; Capaon, B. J. Chem. Soc., Perkin 2 1982, 101.
- (562) Alexander, R. D.; Fall, W. A.; Holper, P. N. Aust. J. Chem. 1980. 33. 25'
- Sasaki, M.; Takisawa, N.; Amita, F.; Osugi, J. J. Am. Chem. Soc. 1980, 102, 7268. Inoue, H. Rev. Phys. Chem. Jpn. 1978, 48, 105. (563)
- (564)
- (565) Liphard, K. G.; Jost, A. Ber. Bunsenges. Phys. Chem. 1978, 82, 707.
- Hamann, S. D.; Linton, M. Aust. J. Chem. 1977, 30, 1883. Tamura, K.; Suminaka, M. J. Chem. Soc., Faraday Trans. 1 (566)(567)
- (568)(569)
- 1985, 81, 2287. Isaacs, N. S.; Abed, O. H. Tetrahedron Lett. 1986, 27, 995. Inagaki, Y.; Osugi, J.; Sasaki, M. J. Chem. Soc., Perkin Trans. 2 1985, 115.
- (570) Sasaki, M.; Bando, M.; Inagaki, Y.; Amita, F.; Osugi, J. J. Chem. Soc., Chem. Commun. 1981, 725.
   (571) Nishimura, N.; Motoyama, T. Bull. Chem. Soc. Jpn. 1984, 57,
- (572) Isaacs, N. S.; Javaid, K. J. Chem. Soc., Perkin Trans. 2 1979, 1583.
- (573) Isaacs, N. S.; Heremans, K. A. H. Tetrahedron Lett. 1981, 22, 4759.

- (574) Isaacs, N. S.; Javaid, K. Tetrahedron Lett. 1977, 18, 3073.
  (575) Isaacs, N. S.; Laila, A. H. Tetrahedron Lett. 1984, 25, 2407.
  (576) Sasaki, M.; Sugimoto, N.; Osugi, J. Chem. Lett. 1980, 887.
  (577) Sugimoto, N.; Sasaki, M.; Osugi, J. Bull. Inst. Chem. Res., Kyoto Univ. 1981, 59, 63.
  (578) Sugimoto, N.; Sasaki, M.; Osugi, J. Bull. Chem. Soc. Jpn. 1981, 54, 2598.
  (570) Sugimoto, N.; Sasaki, M.; Osugi, I. J. Am. Chem. Soc. 1982.
- (579) Sugimoto, N.; Sasaki M.; Osugi, J. J. Am. Chem. Soc. 1983,
- 105, 7676. (580) Sugimoto, N.; Sasaki, M.; Osugi, J. J. Chem. Soc., Perkin
- Trans. 2 1984, 655. Sugimoto, N.; Sasaki, M. J. Chem. Soc., Faraday Trans. 1 (581)1985, 81, 2959.

- (582) Vander Donckt, E.; Antheunis, N. J. Chem. Soc., Faraday Trans. 2 1980, 76, 324.
- Hara, K.; Yano, H. J. Phys. Chem. 1986, 90, 4265 (583)
- (584) Okamoto, M.; Tanaka, F.; Teranishi, H. J. Phys. Chem. 1986, 90. 1055
- (585) Turro, N. J.; Okamoto, M.; Kuo, P-L. J. Phys. Chem. 1987, 91, 1819.
- (586) Vander Donckt, E.; Zenkouar, M. J. Chim. Phys. Phys. Chim. Biol. 1985, 82, 517.
- (587) Okamoto, M.; Teranishi, H. J. Am. Chem. Soc. 1986, 108,
- (588) Huppert, D. H.; Jayaraman, A.; Maines, R. G.; Steyert, D. W.; Rentzepis, P. M. J. Chem. Phys. 1984, 81, 5596. (589) Brey, L. A.; Schuster, G. B.; Drickamer, H. G. J. Am. Chem.
- Soc. 1979, 101, 129. (590) Hammerich, B.; Schmidt, R.; Brauer, H.-D. Ber. Bunsenges.
- Phys. Chem. 1979, 83, 198. (591) Hamann, S. D.; Linton, M.; Sasse, W. H. F. Aust. J. Chem.
- 1980, 33, 1419 (592) Brauer, H.-D.; Schmidt, R.; Hammerich, B. Z. Naturforsch.
- 1981, 36a, 489.

- 1981, 36a, 489.
  (593) Hammerich, B.; Schmidt, R.; Brauer, H.-D. Mater. Res. Soc. Symp. Proc. 1984, 22, 323.
  (594) Ohling, W. Ber. Bunsenges. Phys. Chem. 1984, 88, 109.
  (595) Balschi, J. A.; Cirillo, V. P.; le Noble, W. J.; Pike, M. M.; Schreiber, E. C.; Simon, S. R.; Springer, C. S. Rare Earth Mod. Sci. Technol. 1982, 3, 15.
  (596) Bevington, J. C.; Suggate, J. R.; Weale, K. E. Polymer 1977, 18, 749
- 18, 749.
- (597) Zhulin, V. M.; Stashina, G. A.; Ganyushkin, A. V.; Yablokova, N. V.; Yablokov, V. A.; Rudakov, O. B. Izv. Akad. Nauk SSSR, Ser. Khim. 1983, 1659.
- (598) Zhulin, V. M.; Lipovich, T. V.; Antonovskii, V. L. *Izv. Akad. Nauk SSSR, Ser. Khim.* 1985, 2831.
   (599) Lapshova, A. A.; Zorin, V. V.; Zlotskii, S. S.; Stashina, G. A.; Zhulin, V. M.; Rakhmankulov, D. L. *Zh. Org. Khim.* 1981, *17*, 843.
- (600) Zorin, V. V.; Zlotskii, S. S.; Botnikov, M. Y.; Zhulin, V. M.; Rakhmankulov, D. L. *Zh. Org. Khim.* 1978, *14*, 875.
  (601) Pastushenko, E. V.; Zlotskii, S. S.; Botnikov, M. Ya.; Zhulin, V. M.; Rakhmankulov, D. L. *Zh. Prikl. Khim.* 1979, *52*, 453.
  (602) Jurczak, J.; Kozluk, T.; Tkacz, M. *Helv. Chim. Acta* 1983, *66*,
- 218.
- (603) Jurczak, J.; Bauer, T. Tetrahedron 1986, 42, 5045.
  (604) Jurczak, J. Bull. Chem. Soc. Jpn. 1979, 52, 3438.
  (605) Jurczak, J. Pol. J. Chem. 1979, 53, 2539.

- (606) (607)
- Jurczak, J.; Tkacz, M. J. Org. Chem. 1979, 44, 3347. Jurczak, J.; Tkacz, M. Bull. Pol. Acad. Sci. 1984, 32, 59. Dolbier, W. R.; Seabury, M. J. J. Am. Chem. Soc. 1987, 109, (608) 4393.

- (609) Kraemer, H. P.; Plieninger, H. Tetrahedron 1978, 34, 891.
  (610) Botnikov, M. Ya.; Milyavskaya, I. Kh.; Zhulin, V. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1977, 577.
  (611) Nonnemacher, A.; Mayer, R.; Plieninger, H. Liebigs Ann.
- Chem. **1983**, 2135.

- Chem. 1983, 2135.
  (612) Devaure, J.; Lascombe, J. Nouv. J. Chim. 1979, 3, 579.
  (613) Nomura, H.; Murasawa, K.; Ito, N.; Iida, F.; Udagawa, Y. Bull. Chem. Soc. Jpn. 1984, 57, 3321.
  (614) Taniguchi, Y.; Tyaka, H.; Wong, P. T. T.; Whalley, E. J. Chem. Phys. 1981, 75, 4815.
  (615) Ikawa, S.; Whalley, E. J. Chem. Phys. 1984, 81, 1620.
  (616) Nomura, H.; Udagawa, Y.; Murasawa, K. J. Mol. Struct. 1985, 126, 229.
- 1985, 126, 229
- (617) Nomura, H.; Koda, S. Bull. Chem. Soc. Jpn. 1985, 58, 2917.
  (618) Gardiner, D. J.; Jackson, R. W. J. Chem. Soc., Chem. Commun. 1981, 159.
- (619) Wong, P. T. T.; Mantsch, H. H. J. Chem. Phys. 1983, 79, 2369
- (620) Ledwig, R.; Würflinger, A. J. Chem. Soc., Faraday Trans. 2 1987, 83, 665.
- (621) Gardiner, D. J.; Littleton, C. J.; Walker, N. A. J. Raman Spectrosc. 1987, 18, 9.
  (622) Yamada, H.; Kotani, K.; Sera, A. J. Chem. Soc., Perkin Trans. 2 1984, 1029.
- (623) Sawamura, S.; Suzuki, K.; Taniguchi, Y. Chem. Phys. Lett. 1984, 111, 589.
- (624) Taniguchi, Y.; Sawamura, S.; Murakoshi, I. J. Chem. Phys. 1985, 83, 2305.
  (625) Clark, F. T.; Drickamer, H. G. Chem. Phys. Lett. 1985, 115,
- 173.

- (626) Clark, F. T.; Drickamer, H. G. J. Phys. Chem. 1986, 90, 589.
  (627) Clark, F. T.; Drickamer, H. G. J. Chem. Phys. 1984, 81, 1024.
  (628) Josefiak, C.; Schneider, G. M. J. Phys. Chem. 1979, 83, 2126.
  (629) Sawamura, S.; Taniguchi, Y.; Suzuki, K. Spectrochim. Acta
- (630)(631)
- Sawamura, S.; Tanigucin, T., Suzuai, In Spectral
  1986, 42A, 669.
  Josefiak, C.; Schneider, G. M. J. Phys. Chem. 1980, 84, 3004.
  Sawamura, S.; Tsuchiya, M.; Taniguchi, Y.; Suzuki, K.
  Physica 1986, 139, 140B, 732.
  Devaure, J.; Vignalou, J.-R.; Lascombe, J. J. Chim. Phys.
  1072, 1448 (632)1973, 1448.

- (633) Nishikawa, S.; Yamaguchi, T. Bull. Chem. Soc. Jpn. 1983, 56, 1585.
- Nishikawa, S.; Uchida, T. J. Solution Chem. 1983, 12, 771. (634)Nishikawa, S.; Shibata, M. Bull. Chem. Soc. Jpn. 1984, 57, (635)
- 2357(636) Uosaki, Y.; Nakahara, M.; Sasaki, M.; Osugi, J. Chem. Lett. 1979, 727
- (639) Jung, J.-B.; Lee, H.-S.; Kim, K. Daehan Hwahak Hwoejee 1985, 29, 191

- (640) Sawamura, S.; Taniguchi, Y.; Suzuki, K. Bull. Chem. Soc. Jpn. 1979, 52, 281.
- (641) Sawamura, S.; Taniguchi, Y.; Suzuki, K. Bull. Chem. Soc. Jpn. 1979, 52, 284.
   (642) Kwun, O. C.; Kim, J. R. Daehan Hwahak Hwoejee 1983, 27,
- 102.
- (643) Kwun, O. C.; Kim, J. R. Daehan Hwahak, Hwoejee 1983, 27,
- (644) Kim, J. R.; Kwun, O. C. Bull. Korean Chem. Soc. 1985, 6, 74. (645) Kwun, O. C.; Kim, J. R. Bull. Korean Chem. Soc. 1985, 6,
- 186. Jee, J.-G.; Lee, Y.-H.; Woo, E.-H.; Lee, K.-H. Bull. Korean (646)
- (647) Hwang, J.-U.; Jee, J.-G.; Lee, Y.-H.; Woo, U.-H. Daehan Hwahak Hwoejee 1984, 28, 79.
- Jee, J.-G.; Lee, Y.-H.; Lee, K.-H.; Kwun, O. C. Bull. Korean (648)Chem. Soc. 1984, 5, 112. Williams, R. K. J. Phys. Chem. 1981, 85, 1795. Williams, R. K. J. Phys. Chem. 1984, 88, 93.
- (649)
- (650)
- Roberts, E. R.; Drickamer, H. G. J. Phys. Chem. 1985, 89, (651) 3092.
- (652)Nishikido, N.; Shinozaki, M.; Sugihara, G.; Tanaka, M. J. Colloid Interface Sci. 1981, 82, 352. Fisher, M. T.; White, R. E.; Sligar, S. G. J. Am. Chem. Soc.
- (653)1986, 108, 6835
- Okamoto, M.; Teranishi, H. J. Phys. Chem. 1984, 88, 5644. (654)(655) Hara, K.; Arase, T.; Osugi, J. J. Am. Chem. Soc. 1984, 106,
- 1968
- Hara, K.; Arase, T. J. Chem. Phys. Lett. 1984, 107, 178. Kryukov, P. A.; Larionov, E. G.; Starostina, L. I. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 1980, 101. Srivastava, S.: DeCicco, M. J.; Kuo, E.; le Noble, W. J. J. (656) (657)
- (658)
- (659)
- (660)
- Srivastava, S.: DeCicco, M. J.; Kuo, E.; le Noble, W. J. J. Solution Chem. 1984, 13, 663.
  Kitamura, Y.; Itoh, T. J. Solution Chem. 1987, 16, 715.
  Stretenskaya, N. G. Geokhimiya 1977, 430.
  Barbero, J. A.; McCurdy, K. G.; Tremaine, P. R. Can. J. Chem. 1982, 60, 1872.
  Adams, W. A.; Preston, C. M.; Chew, H. A. M. J. Chem. Phys. 1979, 70, 2074.
  Larson, J. W.; Zeeb, K. G.; Hepler, L. G. Car, J. Chem. 1982. (661)
- (662)
- Larson, J. W.; Zeeb, K. G.; Hepler, L. G. Can. J. Chem. 1982, (663)60, 2141.
- (664) Surdo, A. L.; Bernstrom, K.; Jonsson, C.-A.; Millero, F. J. J.
- (664) Surdo, A. E., Definition, M., Sonsson, C. M., Manco, F. & C. Phys. Chem. 1979, 83, 1255.
   (665) Barbero, J. A.; Hepler, L. G.; McCurdy, K. G.; Tremaine, P. R. Can. J. Chem. 1983, 61, 2509.
   (666) Nal'kina, Z. A. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim.
- Nauk 1983, 46. (667) Riedl, B.; Jolicoeur, C. J. Phys. Chem. 1984, 88, 3348. (668) Pointud, Y.; Juillard, J. Jeminet, G.; David, L. J. Chem. Soc.,
- (669)
- (670)
- (671)
- Faraday Trans. 1 1981, 77, 1.
   Shahidi, F. J. Chem. Soc., Faraday Trans. 1 1981, 77, 1511.
   Holiand, H.; Holvik, H. J. Solution Chem. 1978, 7, 587.
   Delben, F.; Crescenzi, V. J. Solution Chem. 1978, 7, 597.
   Hwang, J. U.; Chung, J. J.; Park, Y. T.; Jee, J. G.; Park, E.
   S. Daehan Hwahak Hwoejee 1983, 26, 311.
   Yaha, J. H. J. Machan, Humaina 1985, 29 (672)
- (673) Yoh, S.-D.; Park, J.-H. Daehan Hwahak Hwoejee 1985, 29, 328
- (674) Hwang, J.-U.; Bae, Z.-U.; Chung, J.-J.; Jung, J.-W.; Chang, K.-H. Daehan Hwahak Hwoejee 1986, 30, 152.
  (675) Read, J. A. J. Solution Chem. 1982, 11, 649.
- (676) Inoue, H.; Hara, K.; Osugi, J. Rev. Phys. Chem. Jpn. 1978, 48, 44.
- (677) Inoue, H.; Hara, K.; Osugi, J. Chem. Lett. 1978, 377.
  (678) Shahidi, F.; Farrell, P. G. J. Solution Chem. 1978, 7, 549.
  (679) Morel-Desrosiers, N.; Morel, J.-P. J. Phys. Chem. 1984, 88, 1023
- Jee, J.-G.; Lee, Y.-H.; Kwak, Y.-J. Bull. Korean Chem. Soc. (680)1985, 6, 266.
- (681) Hwang, J.-U.; Chung, J.-J.; Lee, J.-E. Daehan Hwahak Hwoejee 1986, 30, 145.
  (682) Hwang, J.-U.; Lee, J.-E.; Jung, J.-W.; Chang, K.-H. Daehan Hwahak Hwoejee 1986, 30, 159.
  (683) Hauer, J.; Muller, K.; Lüdemann, H.-D.; Jaenicke, R. FEBS

- (684)
- Lett. 1981, 135, 135. Lepori, L.; Mollica, V. Z. Phys. Chem. N.F. 1980, 123, 51. Shahidi, F. J. Chem. Soc., Faraday Trans. 1 1980, 76, 101. Mastrangelo, C. J.; Offen, H. W. J. Solution Chem. 1980, 9, (685)(686)
- 325.

- (687) Kitamura, Y. Bull. Chem. Soc. Jpn. 1979, 52, 3453.
   (688) Fisher, F. H.; Fox, A. P. J. Solution Chem. 1978, 7, 561.

Chemical Reviews, 1989, Vol. 89, No. 3 687

- (689) Fisher, F. H.; Fox, A. P. J. Solution Chem. 1975, 4, 225.
   (690) Fisher, F. H.; Fox, A. P. J. Solution Chem. 1975, 4, 225.
   (691) Hsieh, A.-K.; Ang, K.-P.; Chang, M. J. Chem. Soc., Faraday Trans. 1 1982, 78, 2455.
- Fisher, F. H.; Fox, A. P. J. Solution Chem. 1977, 6, 641. Shimizu, K.; Tsuchihashi, N.; Kondo, Y. Rev. Phys. Chem. Jpn. 1977, 47, 80. (692)(693)
- Millero, F. J.; Gombar, F.; Oster, J. J. Solution Chem. 1977, (694) . 269.
- Surdo, A. L.; Millero, F. J. J. Solution Chem. 1980, 9, 163. (695)(696) Dadgar, A.; Khorsandl, D.; Atkinson, G. J. Phys. Chem. 1982,
- 86, 3829.

- (697) Schwitzgebel, G.; Luhrs, C.; Barthel, J. Ber. Bunsenges. Phys. Chem. 1980, 84, 1220.
  (698) Chen, C.-T.; Millero, F. J. J. Solution Chem. 1977, 6, 589.
  (699) Okuwa, T. Bull. Chem. Soc. Jpn. 1980, 53, 571.
  (700) Borisova, E. G.; Latysheva, V. A.; Pivovalova, T. L.; Smirnova, N. I. Vestn. Leningr. Univ., Fiz. Khim. 1984, 39.
  (701) Chung, J.-J. Bbo, B.-G. Dnehan Humbek Humeine 1986, 30.
- (701) Chung, J.-J.; Rho, B.-G. Daehan Hwahak Hwoejee 1986, 30,
- (702) Glugla, P. G.; Byon, J. H.; Eckert, C. A. J. Chem. Eng. Data 1981, 26, 80.
- (703)
- (704)
- 1981, 26, 80.
  Ishihara, I. Rev. Phys. Chem. Jpn. 1978, 48, 27.
  Inada, E. Rev. Phys. Chem. Jpn. 1978, 48, 72.
  Cleaver, B.; Spencer, B. N.; Quddus, M. A. J. Chem. Soc., Faraday Trans. 1 1978, 686.
  Devaure, J.; Manouvrier, E.; Besnard, M.; Lascombe, J. High Temp.-High Press. 1977, 9, 583.
  Manouvrier, I. J. Raman Spectrosc. 1978, 7, 81. (705)
- (706)

- (707) Manouvrier, E.; Devaure, J. J. Raman Spectrosc. 1978, 7, 81.
  (708) Hovey, J. K.; Tremaine, P. R. J. Phys. Chem. 1985, 89, 5541.
  (709) Sze, Y. K.; McBryde, W. A. E. Can. J. Chem. 1980, 58, 1795.
  (710) Harada, S.; Sahara, H.; Nakagawa, T. Bull. Chem. Soc. Jpn.
- 1983, 56, 3833. (711) Høiland, H.; Ringseth, J. A.; Vikingstad, E. J. Solution
- (112) Høiland, H.; Ringseth, J. A.; Brun, T. S. J. Solution Chem. (712) Høiland, H.; Ringseth, J. A.; Brun, T. S. J. Solution Chem. 1**979**, *8*, 779.
- (713) Morel-Desrosiers, N.; Morel, J.-P. J. Phys. Chem. 1985, 89, 1541.
- (714) Morel-Desrosiers, N.; Morel, J.-P. Nouv. J. Chim. 1979, 3, 539
- (715) Morel-Desrosiers, N.; Morel, J.-P. J. Am. Chem. Soc. 1981, 103, 4743.
- (716) Yoshitani, K.; Yamamoto, M.; Yamamoto, Y. Bull. Chem.
- (110) Toshitani, R.; Tamanioto, M.; Tamanioto, T. Butt. Chem. Soc. Jpn. 1983, 56, 1978.
   (717) Schulman, E. M.; Cheung, C. K.; Merbach, A. E.; Yamada, H.; le Noble, W. J. J. Am. Chem. Soc. 1987, 109, 7206.
   (718) Høiland, H.; Hald, L. H.; Kvammen, O. J. J. Solution Chem.
- 1981, 10, 775
- (719) Hershey, J. P.; Damesceno, R.; Millero, F. J. J. Solution Chem. 1984, 13, 825.
  (720) Williams, R. M.; Lee, B. H. J. Am. Chem. Soc. 1986, 108,
- 6431.
- (721) Haberfield, P.; Block, P.; Lux, M. S. J. Am. Chem. Soc. 1975, 97, 5804.
- (722) Hamann, S. D. Trans. Faraday Soc. 1958, 54, 507.
- (723) For example: Yamauchi, S.; Hirota, N.; Takahara, S.; Sakuragi, H.; Tokumaru, K. J. Am. Chem. Soc. 1985, 107, 5021. (724) Schöllkopf, U.; Hoppe, I. Justus Liebigs Ann. Chem. 1971,
- 765, 153 (725) Gajewski, J. J.; Conrad, N. D. J. Am. Chem. Soc. 1979, 101, 6693.
- 6693.
  (726) Ballester, M.; Riera, J.; Castafier, J.; Badia, C.; Monso, J. M. J. Am. Chem. Soc. 1971, 93, 2215.
  (727) Bartlett, P. D.; Stephenson, L. M.; Wheland, R. J. Am. Chem. Soc. 1971, 93, 6518.
  (728) Stewart, C. A. J. Am. Chem. Soc. 1972, 94, 635.
  (729) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley-Interscience: New York, 1984; pp 1-176.
  (730) le Noble, W. J.; Ojosipe, B. J. Am. Chem. Soc. 1975, 97, 5939.
  (732) Quayle, O. R. Chem. Rev. 1953, 53, 439.

- Le Noble, W. J. Highlights of Organic Chemistry; Marcel Dekker: New York, 1974; p 873ff.
  Drude, P.; Nernst, W. Z. Phys. Chem. 1894, 15, 79.
  Cameron, C.; Saluja, P. P. S.; Floriano, M. A.; Whalley, E. J. (732)
- (733)
- (734)
- Phys. Chem. 1988, 92, 3417. Chen, D. T. Y.; Laidler, K. J. Can. J. Chem. 1959, 37, 599. Sneen, R. A.; Felt, G. R.; Dickason, W. C. J. Am. Chem. Soc. (735)(736)
- (736) Sheen, R. A.; Felt, G. R.; Dickason, W. C. J. Am. Chem. Soc. 1973, 95, 638.
  (737) Swain, C. G.; Sheats, J. E.; Harbison, K. G. J. Am. Chem. Soc. 1975, 97, 783.
  (738) le Noble, W. J.; Yates, B. L.; Scaplehorn, A. W. J. Am. Chem. Soc. 1967, 89, 3751.
- (739) Ramirez, F.; Marecek, J. F.; Semul, S. S. J. Am. Chem. Soc. 1982, 104, 1345
- (740) Meyerson, S.; Harvan, D. J.; Hass, J. R.; Ramirez, F.; Mare-cek, J. F. J. Am. Chem. Soc. 1984, 106, 6877. (741) See: Grell, E.; Funck, T.; Eggers, F. In Membranes; Eiseman,

- 688 Chemical Reviews, 1989, Vol. 89, No. 3
- G., Ed.; Marcel Dekker: New York, 1975; Vol. III, pp 1-171. (742) Chock, P. B. Proc. Natl. Acad. Sci. U.S.A. 1972, 69, 1939. (743) Grieger, R. A.; Eckert, C. A. J. Am. Chem. Soc. 1970, 92,
- 7149(744) Hoffmann, R.; Woodward, R. B. J. Am. Chem. Soc. 1965, 87,
- 4388(745) le Noble, W. J. In High Pressure Chemistry; Kelm, H., Ed.;
- Reidel: Boston, 1978; p 325. (746) Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 3rd ed.; Harper and Row: New York, 1983; Chapter 3.
- (747) Yoh, S.-D.; Kim, S.-H.; Park, J.-H. J. Chem. Soc., Perkin Trans. 2 1987, 1439
- (748) Pingel, N.; Poser, U.; Würflinger, A. J. Chem. Soc., Faraday Trans. 1 1984, 80, 3221.
- (749) Buback, M.; Lendle, H. Makromol. Chem. 1983, 184, 193.
   (750) Mohanty, B.; Palit, S. K.; Biswas, M. J. Appl. Polym. Sci. 1986, 32, 2969
- (751) Mohanty, B.; Palit, S. K.; Biswas, M. J. Appl. Polym. Sci. 1987, C25, 944.
- (752) El'yanov, B. S.; Shakhova, S. K.; Polkovnikov, B. D.; Rar, L.
- F. J. Chem. Soc., Perkin Trans. 2 1985, 11.
   (753) Beck, K.; Hünig, S.; Klärner, F. G.; Kraft, P.; Artschwager-Perl, U. Chem. Ber. 1987, 120, 2041.
- (754) Borschel, E. M.; Buback, M. Z. Naturforsch. 1987, 42A, 187.
   (755) Barraza, R.; Borschel, E. M.; Buback, M. Z. Naturforsch.
- 1987, 42A, 406. Vogel, S.; Knoche, W.; Schoeller, W. W. J. Chem. Soc., Per-(756)
- kin Trans. 2 1986, 769. (757)
- Jee, J.-G. Bull. Chem. Soc. Jpn. 1987, 60, 4483. Saluja, P. P. S.; Cameron, C.; Floriano, M. A.; Lavergne, A.; (758)McLaurin, G. E.; Whalley, E. Rev. Sci. Instrum. 1986, 57, 2791.
- (759)Sueno, S.; Nakai, I.; Imafuku, M.; Morikawa, H.; Kimata, M.; Ohsumi, K.; Nomura, M.; Shimomura, M. Chem. Lett. 1986,
- (760) Zakin, M. R.; Grubb, S. G.; King, H. E.; Hershbach, D. R. J. Chem. Phys. 1986, 84, 1080.
   (761) Blandamer, M. J.; Burgess, J.; Robertson, R. E.; Scott, J. M.
- V. Chem. Rev. 1982, 82, 259.
- (762) Blandamer, M. J.; Burgess, J.; Engberts, J. B. F. N. Chem.
- (762) Blandamer, M. J.; Burgess, J.; Engberts, J. B. F. N. Chem. Soc. Rev. 1985, 14, 237.
  (763) Blandamer, M. J.; Burgess, J.; Clark, B.; Robertson, R. E.; Scott, J. M. W. J. Chem. Soc., Faraday Trans. 1 1985, 81, 11.
  (764) Yoshimura, Y.; Osugi, J.; Nakahara, M. Ber. Bunsenges. Phys. Chem. 1985, 89, 25.
  (765) Yoshimura, Y.; Nakahara, M. Ber. Bunsenges. Phys. Chem.
- 1985, 89, 426. Yoshimura, Y.; Nakahara, M. Ber. Bunsenges. Phys. Chem. (766)
- 1985, 89, 1004. Yoshimura, Y.; Nakahara, M. Ber. Bunsenges. Phys. Chem. (767)
- 1986, 90, 58 Munoz, R. C.; Holroyd, R. A.; Nishikawa, M. J. Phys. Chem. (768)
- 1985, 89, 2969. (769) Fukushima, T.; Arakawa, H.; Ichikawa, M. J. Phys. Chem.
- 1985, 89, 4440. Turley, W. D.; Offen, H. W. J. Phys. Chem. 1985, 89, 2933.
- (770)
- (771) Hvidt, A. Annu. Rev. Biophys. Bioeng. 1983, 12, 1.
   (772) Luft, G. Polymer Handbook; Brandrup, J., Immergut, E. H.,

Eds.; Wiley: New York, 1973; Vol. II, p 453. Buback, M.; Vögele, H. P.; Winkels, H. J. Makromol. Chem.,

- (773)Makromol. Symp. 1986, 5, 69.
- (774) Matsumoto, K.; Sera, A.; Uchida, T. Synthesis 1985, 1.
- (775) Matsumoto, K.; Sera, A. Synthesis 1985, 999.
- (776) Isaacs, N. S.; George, A. V. Chem. Br. 1987, 47.
- (777) Philips, L. A.; Webb, S. P.; Yeh, S. W.; Clark, J. H. J. Phys. Chem. 1985, 89, 17 (778) Mirbach, M. F.; Mirbach, M. J.; Saus, A. Chem. Rev. 1982,
- 82.59. (779) Schneider, G. M.; Dittmann, M.; Metz, U.; Wenzel, J. Pure
- Appl. Chem. 1987, 59, 79
- (780) Morild, E. Adv. Protein Chem. 1981, 34, 93.
  (781) Roe, D. C. Organometallics 1987, 6, 942.
  (782) Murata, K.; Matsuda, A.; Masuda, T.; Watanabe, E.; Wada, K. Bull. Chem. Soc. Jpn. 1987, 60, 1957.
- (783)Franklin, T. C.; Mathew, S. A. J. Electrochem. Soc. 1987, 134, 760
- (784) Lewis, G. J.; Whalley, E. J. Chem. Phys. 1980, 72, 2291.
- (785) Sim, P. G.; Whalley, E. J. Phys. Chem. 1987, 91, 1877.
- (786) Blandamer, M. J.; Burgess, J.; Hakin, A. W. J. Chem. Soc., Faraday Trans 1987, 83, 1783.
- (787) Schilling, W.; Franck, E. U. Ber. Bunsenges. Phys. Chem., in ress.
- (788) Zhulin, V. M.; Ostval'd, G. V.; Bogdanov, V. S.; Kondrat'eva, G. Ya; Zhulavleva, E. B. Izv. Akad. Nauk SSSR, Ser. Khim. 1987, 1678.
- (789) Hallinan, N.; McArdle, P.; Burgess, J.; Guarado, P. J. Orga-
- nomet. Chem. 1987, 333, 77.
   (790) Zhulin, V. M.; Zhulavleva, E. B.; Makarova, Z. G.; Krayushkin, M. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1987, 1951.
- (791) Rudakov, O. B.; Yakovlev, I. P.; Ganyushkin, A. V.; Sosnov-skaya, T. A.; Zhulin, V. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1987, 1489.
  (792) Kwun, O. C.; Kyong, J. B. Daehan Hwahak Hwoejee 1987,
- 31.207.
- (793) Kwun, O. C.; Kim, Y. C.; Kyong, J. B.; Choi, K. J. Daehan Hwahak Hwoejee 1987, 31, 413.
- (794) Van Hoboken, N. J.; Steinberg, H. Recl. Trav. Chim. Pays-
- (194) Van Hoboken, N. S., Steinberg, H. Rett. 1740. Chim. 1435-Bas 1972, 91, 153.
   (795) Virtanen, P. O. I.; Kuokkanen, T.; Rauma, T. Finn. Chem. Lett. 1987, 14, 193.
   (796) Zhulin, V. M.; Makarova, Z. G.; Klimov, E. M.; Mal'sheva, N.
- N.; Kochetkov, N. K. Dokl. Akad. Nauk SSSR 1987, 296, 138.
- (797) Mollica, V.; Lepori, L. Z. Phys. Chem. (Munich) 1983, 135, 511.
- (798) Hwang, J.-U.; Lee, W.-B.; Chae, J.-K.; Kim, H.-S. Daehan Hwahak Hwoejee 1987, 31, 400.
  (799) Hwang, J.-U.; Lee, W.-B.; Cho, J.-J. Daehan Hwahak Hwoe-jee 1987, 31, 395.
  (800) Kitamura, Y. Bull. Chem. Soc. Jpn. 1985, 58, 2699.

- Kochetkov, N. K.; Zhulin, V. M.; Klimov, E. M.; Malysheva, N. N.; Makarova, Z. G. Izv. Akad. Nauk SSSR, Ser. Khim. (801)1987, 1686
- (802) Herschlag, D.; Jencks, W. P. J. Am. Chem. Soc. 1986, 108, 7938.
- (803)Burgess, J.; Blundell, N.; Cullis, P. M.; Hubbard, C.; Misra, E. J. Am. Chem. Soc. 1988, 110, 7900.